Do you want to publish a course? Click here

Glassy behaviour of sticky spheres: What lies beyond experimental timescales?

116   0   0.0 ( 0 )
 Added by Ludovic Berthier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the swap Monte Carlo algorithm to analyse the glassy behaviour of sticky spheres in equilibrium conditions at densities where conventional simulations and experiments fail to reach equilibrium, beyond predicted phase transitions and dynamic singularities. We demonstrate the existence of a unique ergodic region comprising all the distinct phases previously reported, except for a phase-separated region at strong adhesion. All structural and dynamic observables evolve gradually within this ergodic region, the physics evolving smoothly from well-known hard sphere glassy behaviour at small adhesions and large densities, to a more complex glassy regime characterised by unusually-broad distributions of relaxation timescales and lengthscales at large adhesions.



rate research

Read More

Sticky hard spheres, i.e., hard particles decorated with a short-ranged attractive interaction potential, constitute a relatively simple model with highly non-trivial glassy dynamics. The mode-coupling theory of the glass transition (MCT) offers a qualitative account of the complex reentrant dynamics of sticky hard spheres, but the predicted glass transition point is notoriously underestimated. Here we apply an improved first-principles-based theory, referred to as generalized mode-coupling theory (GMCT), to sticky hard spheres. This theoretical framework seeks to go beyond MCT by hierarchically expanding the dynamics in higher-order density correlation functions -- an approach that may become exact if sufficiently many correlations are taken into account. We predict the phase diagrams from the first few levels of the GMCT hierarchy and the dynamics-related critical exponents, all of which are much closer to the empirical observations than MCT. Notably, the prominent reentrant glassy dynamics, the glass-glass transition, and the higher-order bifurcation singularity classes ($A_3$ and $A_4$) of sticky hard spheres are found to be preserved within GMCT at arbitrary order. Moreover, we demonstrate that when the hierarchical order of GMCT increases, the effect of the short-ranged attractive interactions becomes more evident in the dynamics. This implies that GMCT is more sensitive to subtle microstructural differences than MCT, and that the framework provides a promising first-principles approach to systematically go beyond the MCT regime.
61 - Jacek Grela 2017
We study transient behaviour in the dynamics of complex systems described by a set of non-linear ODEs. Destabilizing nature of transient trajectories is discussed and its connection with the eigenvalue-based linearization procedure. The complexity is realized as a random matrix drawn from a modified May-Wigner model. Based on the initial response of the system, we identify a novel stable-transient regime. We calculate exact abundances of typical and extreme transient trajectories finding both Gaussian and Tracy-Widom distributions known in extreme value statistics. We identify degrees of freedom driving transient behaviour as connected to the eigenvectors and encoded in a non-orthogonality matrix $T_0$. We accordingly extend the May-Wigner model to contain a phase with typical transient trajectories present. An exact norm of the trajectory is obtained in the vanishing $T_0$ limit where it describes a normal matrix.
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization (ECNLE theory) of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small, and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regards to both theory and simulation.
We have performed a thorough examination of the reorientational relaxation dynamics and the ionic charge transport of three typical deep eutectic solvents, ethaline, glyceline and reline by broadband dielectric spectroscopy. Our experiments cover a broad temperature range from the low-viscosity liquid down to the deeply supercooled state, allowing to investigate the significant influence of glassy freezing on the ionic charge transport in these systems. In addition, we provide evidence for a close coupling of the ionic conductivity in these materials to reorientational dipolar motions which should be considered when searching for deep eutectic solvents optimized for electrochemical applications.
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا