We propose a data-assimilation method for evaluating the finite-temperature magnetization of a permanent magnet over a high-dimensional composition space. Based on a general framework for constructing a predictor from two data sets including missing values, a practical scheme for magnetic materials is formulated in which a small number of experimental data in limited composition space are integrated with a larger number of first-principles calculation data. We apply the scheme to (Nd$_{1-alpha-beta-gamma}$Pr$_{alpha}$La$_{beta}$Ce$_{gamma}$)$_{2}$(Fe$_{1-delta-zeta}$Co$_{delta}$Ni$_{zeta}$)$_{14}$B. The magnetization in the whole $(alpha, beta, gamma, delta, zeta)$ space at arbitrary temperature is obtained. It is shown that the Co doping does not enhance the magnetization at low temperatures, whereas the magnetization increases with increasing $delta$ above 320 K.
Prospects for light-rare-earth-based permanent magnet compound R$_{2}$Fe$_{14}$B (R=La$_{1-x}$Ce$_{x}$ with $0 le xle 1$) are inspected from first principles referring to the latest experimental data. Ce-rich 2:14:1 compounds come with good structure stability, reasonably good combination of magnetization and magnetic anisotropy, while a drawback lies in the low Curie temperature that is only 120~K above the room temperature at the Ce$_2$Fe$_{14}$B limit. Best compromise is inspected on the basis of ab initio data for (La$_{1-x}$Ce$_{x}$)$_2$Fe$_{14}$B referring to the magnetic properties of the champion magnet compound Nd$_{2}$Fe$_{14}$B and prerequisite conditions imposed by practical utility.
We have investigated the finite temperature elastic properties of AlRE (RE=Y, Tb, Pr, Nd, Dy) with B2-type structures from first principles. The phonon free energy and thermal expansion is obtained from the quasiharmonic approach based on density-functional perturbation theory. The static volume-dependent elastic constants are obtained from energy-strain functions by using the first-principles total-energy method. The comparison between our predicted results and the ultrasonic experimental data for a benchmark material Al provides excellent agreements. At T = 0K, our calculated values of lattice equilibrium volume and elastic moduli of our calculated AlRE (RE=Y, Tb, Pr, Nd, Dy) intermetallics agree well with the previous theoretical results. The temperature dependent elastic constants exhibit a normal behavior with temperature, i.e., decrease and approach linearity at higher temperature and zero slope around zero temperature. Furthermore, the anisotropy ratio and sound velocities as a function of temperature has also been discussed.
First principles calculations of rare earth (RE)-doped LaSi3N5 host lattice are performed to obtain the electronic structure, the band gap (BG), and the character of electronic transitions. Doping with both trivalent and bivalent RE cations is inspected. RE 4f states form two bands of occupied and unoccupied states separated by ~5 eV. In RE3+-doped compounds 4f states are shifted by ~6 eV to more negative energies compared with RE2+-compounds. This stabilization causes that RE3+ 4f bands are in a different position relative to the valence band and the conduction band than RE2+ 4f bands and therefore different electronic transitions apply. BG of RE3+-compounds decreases from ~4.6 eV (Ce) to ~0.5 eV (Eu). Except for Ce3+, exhibiting the 4f-5d transition, other RE3+-compounds show the charge transfer of the p - 4f character. BG of RE2+-compounds increases from ~0.80 eV (Ce, Pr) to ~0.95 eV (Nd, Pm), ~1.43 eV (Sm), and ~3.28 eV (Eu) and the electronic transition is of the 4f-5d character. The energy level scheme constructed from ab initio calculated electronic structures agrees well with the experimental energy level diagram. The agreement demonstrates the reliability of the hybrid functional HSE06 to describe correctly bands of nonbonding RE 4f electrons.
The third-order elastic moduli and pressure derivatives of the second-order elastic constants of novel B2-type AlRE (RE=Y, Pr, Nd, Tb, Dy, Ce) intermetallics are presented from first-principles calculations. The elastic moduli are obtained from the coefficients of the polynomials from the nonlinear least-squares fitting of the energy-strain functions. The calculated second-order elastic constants of AlRE intermetallics are consistent with the previous calculations. To judge that our computational accuracy is reasonable, the calculated third-order constants of Al are compared with the available experimental data and other theoretical results and found very good agreement. In comparison with the theory of the linear elasticity, the third-order effects are very important with the finite strains are lager than approximately 3.5%. Finally, the pressure derivative has been discussed.
A new crystal growth technique for single-crystals of REFeAsO (RE = La, Ce, Pr, Nd, Sm, Gd, and Tb) using NaI/KI as flux is presented. Crystals with a size up to 300 $mu$m were isolated for single-crystal X-ray diffraction measurements. Lattice parameters were determined by LeBail fits of X-ray powder data against LaB6 standard. A consistent set of structural data is obtained and interpreted in a hard-sphere model. Effective radii for the rare-earth metal atoms for REFeAsO are deduced. The relation of the intra- and inter-plane distances of the arsenic atoms is identified as limiter of the phase formation, and its influence on Tc is discussed.