Do you want to publish a course? Click here

Emotion Correlation Mining Through Deep Learning Models on Natural Language Text

91   0   0.0 ( 0 )
 Added by Xinzhi Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Emotion analysis has been attracting researchers attention. Most previous works in the artificial intelligence field focus on recognizing emotion rather than mining the reason why emotions are not or wrongly recognized. Correlation among emotions contributes to the failure of emotion recognition. In this paper, we try to fill the gap between emotion recognition and emotion correlation mining through natural language text from web news. Correlation among emotions, expressed as the confusion and evolution of emotion, is primarily caused by human emotion cognitive bias. To mine emotion correlation from emotion recognition through text, three kinds of features and two deep neural network models are presented. The emotion confusion law is extracted through orthogonal basis. The emotion evolution law is evaluated from three perspectives, one-step shift, limited-step shifts, and shortest path transfer. The method is validated using three datasets-the titles, the bodies, and the comments of news articles, covering both objective and subjective texts in varying lengths (long and short). The experimental results show that, in subjective comments, emotions are easily mistaken as anger. Comments tend to arouse emotion circulations of love-anger and sadness-anger. In objective news, it is easy to recognize text emotion as love and cause fear-joy circulation. That means, journalists may try to attract attention using fear and joy words but arouse the emotion love instead; After news release, netizens generate emotional comments to express their intense emotions, i.e., anger, sadness, and love. These findings could provide insights for applications regarding affective interaction such as network public sentiment, social media communication, and human-computer interaction.



rate research

Read More

129 - Hai Hu , He Zhou , Zuoyu Tian 2021
Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing.
Despite the high accuracy offered by state-of-the-art deep natural-language models (e.g. LSTM, BERT), their application in real-life settings is still widely limited, as they behave like a black-box to the end-user. Hence, explainability is rapidly becoming a fundamental requirement of future-generation data-driven systems based on deep-learning approaches. Several attempts to fulfill the existing gap between accuracy and interpretability have been done. However, robust and specialized xAI (Explainable Artificial Intelligence) solutions tailored to deep natural-language models are still missing. We propose a new framework, named T-EBAnO, which provides innovative prediction-local and class-based model-global explanation strategies tailored to black-box deep natural-language models. Given a deep NLP model and the textual input data, T-EBAnO provides an objective, human-readable, domain-specific assessment of the reasons behind the automatic decision-making process. Specifically, the framework extracts sets of interpretable features mining the inner knowledge of the model. Then, it quantifies the influence of each feature during the prediction process by exploiting the novel normalized Perturbation Influence Relation index at the local level and the novel Global Absolute Influence and Global Relative Influence indexes at the global level. The effectiveness and the quality of the local and global explanations obtained with T-EBAnO are proved on (i) a sentiment analysis task performed by a fine-tuned BERT model, and (ii) a toxic comment classification task performed by an LSTM model.
Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of social stereotypes. Specifically, we propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) models unethical behavior by communicating context-specific principles of ethics and equity to it. To this end, we build upon recent methods for quantifying a systems social stereotypes, augmenting them with different kinds of ethical interventions and the desired model behavior under such interventions. Our zero-shot evaluation finds that even todays powerful neural language models are extremely poor ethical-advice takers, that is, they respond surprisingly little to ethical interventions even though these interventions are stated as simple sentences. Few-shot learning improves model behavior but remains far from the desired outcome, especially when evaluated for various types of generalization. Our new task thus poses a novel language understanding challenge for the community.
In Natural Language Generation (NLG), End-to-End (E2E) systems trained through deep learning have recently gained a strong interest. Such deep models need a large amount of carefully annotated data to reach satisfactory performance. However, acquiring such datasets for every new NLG application is a tedious and time-consuming task. In this paper, we propose a semi-supervised deep learning scheme that can learn from non-annotated data and annotated data when available. It uses an NLG and a Natural Language Understanding (NLU) sequence-to-sequence models which are learned jointly to compensate for the lack of annotation. Experiments on two benchmark datasets show that, with limited amount of annotated data, the method can achieve very competitive results while not using any pre-processing or re-scoring tricks. These findings open the way to the exploitation of non-annotated datasets which is the current bottleneck for the E2E NLG system development to new applications.
The Bangla language is the seventh most spoken language, with 265 million native and non-native speakers worldwide. However, English is the predominant language for online resources and technical knowledge, journals, and documentation. Consequently, many Bangla-speaking people, who have limited command of English, face hurdles to utilize English resources. To bridge the gap between limited support and increasing demand, researchers conducted many experiments and developed valuable tools and techniques to create and process Bangla language materials. Many efforts are also ongoing to make it easy to use the Bangla language in the online and technical domains. There are some review papers to understand the past, previous, and future Bangla Natural Language Processing (BNLP) trends. The studies are mainly concentrated on the specific domains of BNLP, such as sentiment analysis, speech recognition, optical character recognition, and text summarization. There is an apparent scarcity of resources that contain a comprehensive study of the recent BNLP tools and methods. Therefore, in this paper, we present a thorough review of 71 BNLP research papers and categorize them into 11 categories, namely Information Extraction, Machine Translation, Named Entity Recognition, Parsing, Parts of Speech Tagging, Question Answering System, Sentiment Analysis, Spam and Fake Detection, Text Summarization, Word Sense Disambiguation, and Speech Processing and Recognition. We study articles published between 1999 to 2021, and 50% of the papers were published after 2015. We discuss Classical, Machine Learning and Deep Learning approaches with different datasets while addressing the limitations and current and future trends of the BNLP.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا