Discovery of optical outflows and inflows in the black hole candidate GRS 1716-249


Abstract in English

We present optical spectroscopy obtained with the GTC, VLT and SALT telescopes during the decline of the 2016-2017 outburst of the black hole candidate GRS 1716-249 (Nova Oph 1993). Our 18-epoch data set spans 6 months and reveals that the observational properties of the main emission lines are very variable, even on time scales of a few hours. Several epochs are characterised by P-Cyg (as well as flat-top and asymmetric) profiles in the H$alpha$, H$beta$ and He II ($lambda$4686) emission lines, implying the presence of an accretion disc wind, which is likely hot and dense. The winds terminal velocity ($sim$2000 km s$^{-1}$) is similar to that observed in other black hole X-ray transients. These lines also show transient and sharp red-shifted absorptions, taking the form of inverted P-Cyg profiles. We argue that these profiles can be explained by the presence of infalling material at $sim$1300 km s$^{-1}$. We propose a failed wind scenario to explain this inflow and discuss other alternatives, such as obscuration produced by an accretion-related structure (e.g. the gas stream) in a high inclination system.

Download