Do you want to publish a course? Click here

Detecting Dark Energy Fluctuations with Gravitational Waves

89   0   0.0 ( 0 )
 Added by Marco Raveri
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Luminosity distance estimates from electromagnetic and gravitational wave sources are generally different in models of dynamical dark energy and gravity beyond the standard cosmological scenario. We show that this leaves a unique imprint on the angular power-spectrum of fluctuations of the luminosity distance of gravitational-wave observations which tracks inhomogeneities in the dark energy field. Exploiting the synergy in supernovae and gravitational wave distance measurements, we build a joint estimator that directly probes dark energy fluctuations, providing a conclusive evidence for their existence in case of detection. Moreover, such measurement would also allow to probe the running of the Planck mass. We discuss experimental requirements to detect these signals.



rate research

Read More

The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention. PBHs are generated by the enhancement of scalar perturbations which inevitably produce the induced gravitational waves (GWs). We calculate the induced GWs up to the third-order correction which not only enhances the amplitude of induced GWs, but also extends the cutoff frequency from $2k_*$ to $3k_*$. Such effects of the third-order correction lead to an around $10%$ increase of the signal-to-noise ratio (SNR) for both LISA and pulsar timing array (PTA) observations, and significantly widen the mass range of PBHs in the stellar mass window accompanying detectable induced GWs for PTA observations including IPTA, FAST and SKA. On the other hand, the null detections of the induced GWs by LISA and PTA experiments will exclude the possibility that all of the DM is comprised of PBHs and the GW events detected by LIGO/Virgo are generated by PBHs.
We study the decay of gravitational waves into dark energy fluctuations $pi$, through the processes $gamma to pipi$ and $gamma to gamma pi$, made possible by the spontaneous breaking of Lorentz invariance. Within the EFT of Dark Energy (or Horndeski/beyond Horndeski theories) the first process is large for the operator $frac12 tilde m_4^2(t) , delta g^{00}, left( {}^{(3)}! R + delta K_mu^ u delta K^mu_ u -delta K^2 right)$, so that the recent observations force $tilde m_4 =0$ (or equivalently $alpha_{rm H}=0$). This constraint, together with the requirement that gravitational waves travel at the speed of light, rules out all quartic and quintic GLPV theories. Additionally, we study how the same couplings affect the propagation of gravitons at loop order. The operator proportional to $tilde m_4^2$ generates a calculable, non-Lorentz invariant higher-derivative correction to the graviton propagation. The modification of the dispersion relation provides a bound on $tilde m_4^2$ comparable to the one of the decay. Conversely, operators up to cubic Horndeski do not generate sizeable higher-derivative corrections.
We show that the nonperturbative decay of ultralight scalars into Abelian gauge bosons, recently proposed as a possible solution to the Hubble tension, produces a stochastic background of gravitational waves which is constrained by the cosmic microwave background. We simulate the full nonlinear dynamics of resonant dark photon production and the associated gravitational wave production, finding the signals to exceed constraints for the entire parameter space we consider. Our findings suggest that gravitational wave production from the decay of early dark energy may provide a unique probe of these models.
We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.
141 - S. Ando , B. Baret 2012
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GW) and high-energy neutrinos (HEN). Both GWs and HENs may escape very dense media and travel unaffected over cosmological distances, carrying information from the innermost regions of the astrophysical engines. Such messengers could also reveal new, hidden sources that have not been observed by conventional photon-based astronomy. Coincident observation of GWs and HENs may thus play a critical role in multimessenger astronomy. This is particularly true at the present time owing to the advent of a new generation of dedicated detectors: IceCube, ANTARES, VIRGO and LIGO. Given the complexity of the instruments, a successful joint analysis of this data set will be possible only if the expertise and knowledge of the data is shared between the two communities. This review aims at providing an overview of both theoretical and experimental state-of-the-art and perspectives for such a GW+HEN multimessenger astronomy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا