Do you want to publish a course? Click here

3D diffractive imaging of nanoparticle ensembles using an X-ray laser

64   0   0.0 ( 0 )
 Added by Kartik Ayyer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent.

rate research

Read More

Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.
Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.
The routine atomic-resolution structure determination of single particles is expected to have profound implications for probing the structure-function relationship in systems ranging from energy materials to biological molecules. Extremely-bright, ultrashort-pulse X-ray sources---X-ray Free Electron Lasers (XFELs)---provide X-rays that can be used to probe ensembles of nearly identical nano-scale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the two-dimensional detector is much smaller than the number of pixels. This latter concern, the signal sparsity, materially impedes the application of the method. We demonstrate an experimental analog using a synchrotron X-ray source that yields signal levels comparable to those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross-check on the fidelity of the reconstructed data that is not available during XFEL experiments. We establish---using this experimental data---that a sparsity of order $1.3times10^{-3}$ photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic-resolution XFEL single particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.
We present a laser scanning reflection-matrix microscopy combining the scanning of laser focus and the wide-field mapping of the electric field of the backscattered waves for eliminating higher-order aberrations even in the presence of strong multiple light scattering noise. Unlike conventional confocal laser scanning microscopy, we record the amplitude and phase maps of reflected waves from the sample not only at the confocal pinhole, but also at other non-confocal points. These additional measurements lead us to constructing a time-resolved reflection matrix, with which the sample-induced aberrations for the illumination and detection pathways are separately identified and corrected. We realized in vivo reflectance imaging of myelinated axons through an intact skull of a living mouse with the spatial resolution close to the ideal diffraction limit. Furthermore, we demonstrated near-diffraction-limited multiphoton imaging through an intact skull by physically correcting the aberrations identified from the reflection matrix. The proposed method is expected to extend the range of applications, where the knowledge of the detailed microscopic information deep within biological tissues is critical.
This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the geq10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا