Do you want to publish a course? Click here

Deep Photometric Stereo for Non-Lambertian Surfaces

68   0   0.0 ( 0 )
 Added by Guanying Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper addresses the problem of photometric stereo, in both calibrated and uncalibrated scenarios, for non-Lambertian surfaces based on deep learning. We first introduce a fully convolutional deep network for calibrated photometric stereo, which we call PS-FCN. Unlike traditional approaches that adopt simplified reflectance models to make the problem tractable, our method directly learns the mapping from reflectance observations to surface normal, and is able to handle surfaces with general and unknown isotropic reflectance. At test time, PS-FCN takes an arbitrary number of images and their associated light directions as input and predicts a surface normal map of the scene in a fast feed-forward pass. To deal with the uncalibrated scenario where light directions are unknown, we introduce a new convolutional network, named LCNet, to estimate light directions from input images. The estimated light directions and the input images are then fed to PS-FCN to determine the surface normals. Our method does not require a pre-defined set of light directions and can handle multiple images in an order-agnostic manner. Thorough evaluation of our approach on both synthetic and real datasets shows that it outperforms state-of-the-art methods in both calibrated and uncalibrated scenarios.



rate research

Read More

This paper presents an uncalibrated deep neural network framework for the photometric stereo problem. For training models to solve the problem, existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both. However, in practice, it is challenging to procure both of this information precisely, which restricts the broader adoption of photometric stereo algorithms for vision application. To bypass this difficulty, we propose an uncalibrated neural inverse rendering approach to this problem. Our method first estimates the light directions from the input images and then optimizes an image reconstruction loss to calculate the surface normals, bidirectional reflectance distribution function value, and depth. Additionally, our formulation explicitly models the concave and convex parts of a complex surface to consider the effects of interreflections in the image formation process. Extensive evaluation of the proposed method on the challenging subjects generally shows comparable or better results than the supervised and classical approaches.
This paper proposes an uncalibrated photometric stereo method for non-Lambertian scenes based on deep learning. Unlike previous approaches that heavily rely on assumptions of specific reflectances and light source distributions, our method is able to determine both shape and light directions of a scene with unknown arbitrary reflectances observed under unknown varying light directions. To achieve this goal, we propose a two-stage deep learning architecture, called SDPS-Net, which can effectively take advantage of intermediate supervision, resulting in reduced learning difficulty compared to a single-stage model. Experiments on both synthetic and real datasets show that our proposed approach significantly outperforms previous uncalibrated photometric stereo methods.
Recently, 3D face reconstruction from a single image has achieved great success with the help of deep learning and shape prior knowledge, but they often fail to produce accurate geometry details. On the other hand, photometric stereo methods can recover reliable geometry details, but require dense inputs and need to solve a complex optimization problem. In this paper, we present a lightweight strategy that only requires sparse inputs or even a single image to recover high-fidelity face shapes with images captured under near-field lights. To this end, we construct a dataset containing 84 different subjects with 29 expressions under 3 different lights. Data augmentation is applied to enrich the data in terms of diversity in identity, lighting, expression, etc. With this constructed dataset, we propose a novel neural network specially designed for photometric stereo based 3D face reconstruction. Extensive experiments and comparisons demonstrate that our method can generate high-quality reconstruction results with one to three facial images captured under near-field lights. Our full framework is available at https://github.com/Juyong/FacePSNet.
Photometric Stereo (PS) under outdoor illumination remains a challenging, ill-posed problem due to insufficient variability in illumination. Months-long capture sessions are typically used in this setup, with little success on shorter, single-day time intervals. In this paper, we investigate the solution of outdoor PS over a single day, under different weather conditions. First, we investigate the relationship between weather and surface reconstructability in order to understand when natural lighting allows existing PS algorithms to work. Our analysis reveals that partially cloudy days improve the conditioning of the outdoor PS problem while sunny days do not allow the unambiguous recovery of surface normals from photometric cues alone. We demonstrate that calibrated PS algorithms can thus be employed to reconstruct Lambertian surfaces accurately under partially cloudy days. Second, we solve the ambiguity arising in clear days by combining photometric cues with prior knowledge on material properties, local surface geometry and the natural variations in outdoor lighting through a CNN-based, weakly-calibrated PS technique. Given a sequence of outdoor images captured during a single sunny day, our method robustly estimates the scene surface normals with unprecedented quality for the considered scenario. Our approach does not require precise geolocation and significantly outperforms several state-of-the-art methods on images with real lighting, showing that our CNN can combine efficiently learned priors and photometric cues available during a single sunny day.
Depth estimation from stereo images is carried out with unmatched results by convolutional neural networks trained end-to-end to regress dense disparities. Like for most tasks, this is possible if large amounts of labelled samples are available for training, possibly covering the whole data distribution encountered at deployment time. Being such an assumption systematically unmet in real applications, the capacity of adapting to any unseen setting becomes of paramount importance. Purposely, we propose a continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments. We design a lightweight and modular architecture, Modularly ADaptive Network (MADNet), and formulate Modular ADaptation algorithms (MAD, MAD++) which permit efficient optimization of independent sub-portions of the entire network. In our paradigm, the learning signals needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional stereo algorithms. With both sources, no other data than the input images being gathered at deployment time are needed. Thus, our network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system and pave the way for a new paradigm that can facilitate practical deployment of end-to-end architectures for dense disparity regression.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا