Do you want to publish a course? Click here

MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed Images

121   0   0.0 ( 0 )
 Added by Li Rui
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Semantic segmentation of remotely sensed images plays an important role in land resource management, yield estimation, and economic assessment. U-Net, a deep encoder-decoder architecture, has been used frequently for image segmentation with high accuracy. In this Letter, we incorporate multi-scale features generated by different layers of U-Net and design a multi-scale skip connected and asymmetric-convolution-based U-Net (MACU-Net), for segmentation using fine-resolution remotely sensed images. Our design has the following advantages: (1) The multi-scale skip connections combine and realign semantic features contained in both low-level and high-level feature maps; (2) the asymmetric convolution block strengthens the feature representation and feature extraction capability of a standard convolution layer. Experiments conducted on two remotely sensed datasets captured by different satellite sensors demonstrate that the proposed MACU-Net transcends the U-Net, U-NetPPL, U-Net 3+, amongst other benchmark approaches. Code is available at https://github.com/lironui/MACU-Net.

rate research

Read More

139 - Rui Li , Shunyi Zheng , Ce Zhang 2021
Semantic segmentation using fine-resolution remotely sensed images plays a critical role in many practical applications, such as urban planning, environmental protection, natural and anthropogenic landscape monitoring, etc. However, the automation of semantic segmentation, i.e., automatic categorization/labeling and segmentation is still a challenging task, particularly for fine-resolution images with huge spatial and spectral complexity. Addressing such a problem represents an exciting research field, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose an approach for automatic land segmentation based on the Feature Pyramid Network (FPN). As a classic architecture, FPN can build a feature pyramid with high-level semantics throughout. However, intrinsic defects in feature extraction and fusion hinder FPN from further aggregating more discriminative features. Hence, we propose an Attention Aggregation Module (AAM) to enhance multi-scale feature learning through attention-guided feature aggregation. Based on FPN and AAM, a novel framework named Attention Aggregation Feature Pyramid Network (A2-FPN) is developed for semantic segmentation of fine-resolution remotely sensed images. Extensive experiments conducted on three datasets demonstrate the effectiveness of our A2 -FPN in segmentation accuracy. Code is available at https://github.com/lironui/A2-FPN.
Assigning geospatial objects with specific categories at the pixel level is a fundamental task in remote sensing image analysis. Along with rapid development in sensor technologies, remotely sensed images can be captured at multiple spatial resolutions (MSR) with information content manifested at different scales. Extracting information from these MSR images represents huge opportunities for enhanced feature representation and characterisation. However, MSR images suffer from two critical issues: 1) increased scale variation of geo-objects and 2) loss of detailed information at coarse spatial resolutions. To bridge these gaps, in this paper, we propose a novel scale-aware neural network (SaNet) for semantic segmentation of MSR remotely sensed imagery. SaNet deploys a densely connected feature network (DCFPN) module to capture high-quality multi-scale context, such that the scale variation is handled properly and the quality of segmentation is increased for both large and small objects. A spatial feature recalibration (SFR) module is further incorporated into the network to learn intact semantic content with enhanced spatial relationships, where the negative effects of information loss are removed. The combination of DCFPN and SFR allows SaNet to learn scale-aware feature representation, which outperforms the existing multi-scale feature representation. Extensive experiments on three semantic segmentation datasets demonstrated the effectiveness of the proposed SaNet in cross-resolution segmentation.
Semantic segmentation of remote sensing images plays an important role in a wide range of applications including land resource management, biosphere monitoring and urban planning. Although the accuracy of semantic segmentation in remote sensing images has been increased significantly by deep convolutional neural networks, several limitations exist in standard models. First, for encoder-decoder architectures such as U-Net, the utilization of multi-scale features causes the underuse of information, where low-level features and high-level features are concatenated directly without any refinement. Second, long-range dependencies of feature maps are insufficiently explored, resulting in sub-optimal feature representations associated with each semantic class. Third, even though the dot-product attention mechanism has been introduced and utilized in semantic segmentation to model long-range dependencies, the large time and space demands of attention impede the actual usage of attention in application scenarios with large-scale input. This paper proposed a Multi-Attention-Network (MANet) to address these issues by extracting contextual dependencies through multiple efficient attention modules. A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention. Based on kernel attention and channel attention, we integrate local feature maps extracted by ResNeXt-101 with their corresponding global dependencies and reweight interdependent channel maps adaptively. Numerical experiments on three large-scale fine resolution remote sensing images captured by different satellite sensors demonstrate the superior performance of the proposed MANet, outperforming the DeepLab V3+, PSPNet, FastFCN, DANet, OCRNet, and other benchmark approaches.
The attention mechanism can refine the extracted feature maps and boost the classification performance of the deep network, which has become an essential technique in computer vision and natural language processing. However, the memory and computational costs of the dot-product attention mechanism increase quadratically with the spatio-temporal size of the input. Such growth hinders the usage of attention mechanisms considerably in application scenarios with large-scale inputs. In this Letter, we propose a Linear Attention Mechanism (LAM) to address this issue, which is approximately equivalent to dot-product attention with computational efficiency. Such a design makes the incorporation between attention mechanisms and deep networks much more flexible and versatile. Based on the proposed LAM, we re-factor the skip connections in the raw U-Net and design a Multi-stage Attention ResU-Net (MAResU-Net) for semantic segmentation from fine-resolution remote sensing images. Experiments conducted on the Vaihingen dataset demonstrated the effectiveness and efficiency of our MAResU-Net. Open-source code is available at https://github.com/lironui/Multistage-Attention-ResU-Net.
Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose challenges in segmentation. Our study focused on removing the speckle noise artifact from OCTA images when performing segmentation. Speckle noise is common in OCTA and is particularly prominent over large non-perfusion areas. It may interfere with the proper assessment of retinal vasculature. In this study, we proposed a novel Supervision Vessel Segmentation network (SVS-net) to detect vessels of different sizes. The SVS-net includes a new attention-based module to describe vessel positions and facilitate the understanding of the network learning process. The model is efficient and explainable and could be utilized to reduce the need for manual labeling. Our SVS-net had better performance in accuracy, recall, F1 score, and Kappa score when compared to other well recognized models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا