Do you want to publish a course? Click here

Explaining Xenon-1T signal with FIMP dark matter and neutrino mass in a $U(1)_{X}$ extension

62   0   0.0 ( 0 )
 Added by Sarif Khan
 Publication date 2020
  fields
and research's language is English
 Authors Sarif Khan




Ask ChatGPT about the research

In the present work, we have extended the standard model by an abelian $U(1)_{X}$ gauge group and additional particles. In particular, we have extended the particle content by three right handed neutrinos, two singlet scalars and two vector like leptons. Charged assignments under different gauge groups are such that the model is gauge anomaly free and the anomaly contributions cancel among generations. Once the symmetry gets broken then three physical Higgses are produced, one axion like particle (ALP), which also acts as the keV scale FIMP dark matter, is produced and the remaining component is absorbed by the extra gauge boson. Firstly, we have successfully generated neutrino mass by the type-I seesaw mechanism for normal hierarchy with the $3sigma$ bound on the oscillation parameters. The ALP in the present model can explain the Xenon-1T electron recoil signal at keV scale through its coupling with the electron. We also have vector like leptons which help in producing the dark matter from their decay by the freeze in mechanism. Electron and tauon get mass from dimensional-5 operators at Planck scale and if we consider the vevs $v_{1,2} simeq 10^{12}$ GeV then we can obtain the correct value of the electron mass but not the tauon mass. Vector like leptons help in getting the correct value of the tauon mass through another higher dimensional operator which also has a role in DM production by the $2 rightarrow 2$ process, giving the correct ballpark value of relic density for suitable reheat temperature of the Universe. We have shown that the ALP production by the higher dimensional operator can explain the electron, tauon mass and Xenon-1T signal simultaneously whereas the decay production can not explain all of them together.



rate research

Read More

The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and also the baryon asymmetry of the Universe. In this work to address all the three puzzles, we extend the SM by a local U$(1)_{rm B-L}$ gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having nonzero U$(1)_{rm B-L}$ charges. All the newly added particles become massive after the breaking of U$(1)_{rm B-L}$ symmetry by the vacuum expectation value (VEV) of one of the scalar fields $phi_H$. The other scalar field $phi_{DM}$, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using Type-I seesaw mechanism while the required lepton asymmetry to reproduce the observed baryon asymmetry, can be attained from the CP violating out of equilibrium decays of RH neutrinos in TeV scale. More importantly within this framework, we have studied in detail the production of DM via freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis.
We consider minimal $U(1)$ extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a $U(1)_{(B-L)_3}$ flavoured $B-L$ symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of $m_chilesssim2$ TeV, significantly stronger than that obtained in simplified models. Furthermore, if the $U(1)_{(B-L)_3}$ breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC $Z^prime$ searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of $U(1)$ symmetries.
We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a $U(1)$ extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.
In this work, we discuss two component fermionic FIMP dark matter (DM) in a popular $B-L$ extension of the standard model (SM) with inverse seesaw mechanism. Due to the introduced $mathbb{Z}_{2}$ discrete symmetry, a keV SM gauge singlet fermion is stable and can be a warm DM candidate. Also, this $mathbb{Z}_{2}$ symmetry helps the lightest right-handed neutrino, with mass of order GeV, to be a long-lived or stable particle by choosing a corresponding Yukawa coupling to be very small. Firstly, in the absence of a GeV DM component (i.e., without tuning its corresponding Yukawa coupling), we consider only a keV DM as a single component DM produced by the freeze-in mechanism. Secondly, we study a two component FIMP DM scenario and emphasize that the correct ballpark DM relic density bound can be achieved for a wide parameter space.
We have studied dark matter (DM) phenomenology, neutrinoless double beta decay (NDBD) and realised low scale leptogenesis in a simple extension of Standard Model(SM) with three neutral fermions, a scalar doublet and a dark sector incorporating a singlet scalar and a Dirac singlet fermion. A generic model based on $A_4 otimes Z_4$ flavor symmetry is used to explain both normal and inverted hierarchy mass pattern of neutrino and also to accommodate the dark matter mass. In this extension of the $ u$2HDM, the effective neutrino mass observed in 0$ ubetabeta$ is well within the experimental limit provided by KamLAND-ZEN. In order to validate DM within this model, we have checked relic abundance and free streaming length of the dark sector component, i.e. a Dirac singlet fermion constraining its mass in keV range. More importantly we have also realised low scale leptogenesis simultaneously within this framework and also the Dirac CP phase gets constrained with the results. Co-relation among the observable and model parameters are also carried out within this framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا