No Arabic abstract
Inverse design algorithms are the basis for realizing high-performance, freeform nanophotonic devices. Current methods to enforce geometric constraints, such as practical fabrication constraints, are heuristic and not robust. In this work, we show that hard geometric constraints can be imposed on inverse-designed devices by reparameterizing the design space itself. Instead of evaluating and modifying devices in the physical device space, candidate device layouts are defined in a constraint-free latent space and mathematically transformed to the physical device space, which robustly imposes geometric constraints. Modifications to the physical devices, specified by inverse design algorithms, are made to their latent space representations using backpropagation. As a proof-of-concept demonstration, we apply reparameterization to enforce strict minimum feature size constraints in local and global topology optimizers for metagratings. We anticipate that concepts in reparameterization will provide a general and meaningful platform to incorporate physics and physical constraints in any gradient-based optimizer, including machine learning-enabled global optimizers.
The field of magnonics offers a new type of low-power information processing, in which magnons, the quanta of spin waves, carry and process data instead of electrons. Many magnonic devices were demonstrated recently, but the development of each of them requires specialized investigations and, usually, one device design is suitable for one function only. Here, we introduce the method of inverse-design magnonics, in which any functionality can be specified first, and a feedback-based computational algorithm is used to obtain the device design. Our proof-of-concept prototype is based on a rectangular ferromagnetic area which can be patterned using square shaped voids. To demonstrate the universality of this approach, we explore linear, nonlinear and nonreciprocal magnonic functionalities and use the same algorithm to create a magnonic (de-)multiplexer, a nonlinear switch and a circulator. Thus, inverse-design magnonics can be used to develop highly efficient rf applications as well as Boolean and neuromorphic computing building blocks.
The development of inverse design, where computational optimization techniques are used to design devices based on certain specifications, has led to the discovery of many compact, non-intuitive structures with superior performance. Among various methods, large-scale, gradient-based optimization techniques have been one of the most important ways to design a structure containing a vast number of degrees of freedom. These techniques are made possible by the adjoint method, in which the gradient of an objective function with respect to all design degrees of freedom can be computed using only two full-field simulations. However, this approach has so far mostly been applied to linear photonic devices. Here, we present an extension of this method to modeling nonlinear devices in the frequency domain, with the nonlinear response directly included in the gradient computation. As illustrations, we use the method to devise compact photonic switches in a Kerr nonlinear material, in which low-power and high-power pulses are routed in different directions. Our technique may lead to the development of novel compact nonlinear photonic devices.
A computational nanophotonic design library for gradient-based optimization called SPINS is presented. Borrowing the concept of computational graphs, SPINS is a design framework that emphasizes flexibility and reproducible results. The mathematical and architectural details to achieve these goals are presented, and practical considerations and heuristics for using inverse design are discussed, including the choice of initial condition and the landscape of local minima.
We present a digitized adjoint method for realizing efficient inverse design of digital subwavelength nanophotonic devices. We design a single-mode 3-dB power divider and a dual-mode demultiplexer to demonstrate the digitized adjoint method for single-object and dual-object optimizations, respectively. The optimization comprises three stages, a first stage of continuous variation for an analog pattern, a second stage of forced permittivity biasing for a quasi-digital pattern, and a third stage for a multi-level digital pattern. Compared with conventional brute-force method, the proposed digitized adjoint method can improve the design efficiency by about 5 times, and the performance optimization can reach approximately the same level using the ternary pattern. The digitized adjoint method takes the advantages of adjoint sensitivity analysis and digital subwavelength structure and creates a new way for efficient and high-performance design of compact digital subwavelength nanophotonic devices. This method could overcome the efficiency bottleneck of the brute-force method that is restricted by the number of pixels of a digital pattern and improve the device performance by extending a conventional binary pattern to a multi-level one, which may be attractive for inverse design of large-scale digital nanophotonic devices.
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.