Generation of terawatt, attosecond pulses from relativistic transition radiation


Abstract in English

When a fs duration and hundreds of kA peak current electron beam traverses the vacuum and high-density plasma interface a new process, that we call relativistic transition radiation (R-TR) generates an intense $sim100$ as pulse containing $sim$ TW power of coherent VUV radiation accompanied by several smaller fs duration satellite pulses. This pulse inherits the radial polarization of the incident beam field and has a ring intensity distribution. This R-TR is emitted when the beam density is comparable to the plasma density and the spot size much larger than the plasma skin depth. Physically, it arises from the return current or backward relativistic motion of electrons starting just inside the plasma that Doppler up-shifts the emitted photons. The number of R-TR pulses is determined by the number of groups of plasma electrons that originate at different depths within the first plasma wake period and emit coherently before phase mixing.

Download