Do you want to publish a course? Click here

McKean-Vlasov SDEs in nonlinear filtering

121   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Various particle filters have been proposed over the last couple of decades with the common feature that the update step is governed by a type of control law. This feature makes them an attractive alternative to traditional sequential Monte Carlo which scales poorly with the state dimension due to weight degeneracy. This article proposes a unifying framework that allows to systematically derive the McKean-Vlasov representations of these filters for the discrete time and continuous time observation case, taking inspiration from the smooth approximation of the data considered in Crisan & Xiong (2010) and Clark & Crisan (2005). We consider three filters that have been proposed in the literature and use this framework to derive It^{o} representations of their limiting forms as the approximation parameter $delta rightarrow 0$. All filters require the solution of a Poisson equation defined on $mathbb{R}^{d}$, for which existence and uniqueness of solutions can be a non-trivial issue. We additionally establish conditions on the signal-observation system that ensures well-posedness of the weighted Poisson equation arising in one of the filters.



rate research

Read More

We study the optimal control of path-dependent McKean-Vlasov equations valued in Hilbert spaces motivated by non Markovian mean-field models driven by stochastic PDEs. We first establish the well-posedness of the state equation, and then we prove the dynamic programming principle (DPP) in such a general framework. The crucial law invariance property of the value function V is rigorously obtained, which means that V can be viewed as a function on the Wasserstein space of probability measures on the set of continuous functions valued in Hilbert space. We then define a notion of pathwise measure derivative, which extends the Wasserstein derivative due to Lions [41], and prove a related functional It{^o} formula in the spirit of Dupire [24] and Wu and Zhang [51]. The Master Bellman equation is derived from the DPP by means of a suitable notion of viscosity solution. We provide different formulations and simplifications of such a Bellman equation notably in the special case when there is no dependence on the law of the control.
In this paper, we present a generic methodology for the efficient numerical approximation of the density function of the McKean-Vlasov SDEs. The weak error analysis for the projected process motivates us to combine the iterative Multilevel Monte Carlo method for McKean-Vlasov SDEs cite{szpruch2019} with non-interacting kernels and projection estimation of particle densities cite{belomestny2018projected}. By exploiting smoothness of the coefficients for McKean-Vlasov SDEs, in the best case scenario (i.e $C^{infty}$ for the coefficients), we obtain the complexity of order $O(epsilon^{-2}|logepsilon|^4)$ for the approximation of expectations and $O(epsilon^{-2}|logepsilon|^5)$ for density estimation.
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
101 - Feng-Yu Wang 2021
By refining a recent result of Xie and Zhang, we prove the exponential ergodicity under a weighted variation norm for singular SDEs with drift containing a local integrable term and a coercive term. This result is then extended to singular reflecting SDEs as well as singular McKean-Vlasov SDEs with or without reflection. We also present a general result deducing the uniform ergodicity of McKean-Vlasov SDEs from that of classical SDEs. As an application, the $L^1$-exponential convergence is derived for a class of non-symmetric singular granular media equations.
81 - Panpan Ren , Feng-Yu Wang 2020
The following type exponential convergence is proved for (non-degenerate or degenerate) McKean-Vlasov SDEs: $$W_2(mu_t,mu_infty)^2 +{rm Ent}(mu_t|mu_infty)le c {rm e}^{-lambda t} minbig{W_2(mu_0, mu_infty)^2,{rm Ent}(mu_0|mu_infty)big}, tge 1,$$ where $c,lambda>0$ are constants, $mu_t$ is the distribution of the solution at time $t$, $mu_infty$ is the unique invariant probability measure, ${rm Ent}$ is the relative entropy and $W_2$ is the $L^2$-Wasserstein distance. In particular, this type exponential convergence holds for some (non-degenerate or degenerate) granular media type equations generalizing those studied in [CMV, GLW] on the exponential convergence in a mean field entropy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا