Do you want to publish a course? Click here

A Lightweight Neural Network for Monocular View Generation with Occlusion Handling

57   0   0.0 ( 0 )
 Added by Simon Evain
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this article, we present a very lightweight neural network architecture, trained on stereo data pairs, which performs view synthesis from one single image. With the growing success of multi-view formats, this problem is indeed increasingly relevant. The network returns a prediction built from disparity estimation, which fills in wrongly predicted regions using a occlusion handling technique. To do so, during training, the network learns to estimate the left-right consistency structural constraint on the pair of stereo input images, to be able to replicate it at test time from one single image. The method is built upon the idea of blending two predictions: a prediction based on disparity estimation, and a prediction based on direct minimization in occluded regions. The network is also able to identify these occluded areas at training and at test time by checking the pixelwise left-right consistency of the produced disparity maps. At test time, the approach can thus generate a left-side and a right-side view from one input image, as well as a depth map and a pixelwise confidence measure in the prediction. The work outperforms visually and metric-wise state-of-the-art approaches on the challenging KITTI dataset, all while reducing by a very significant order of magnitude (5 or 10 times) the required number of parameters (6.5 M).



rate research

Read More

Panoptic segmentation aims to perform instance segmentation for foreground instances and semantic segmentation for background stuff simultaneously. The typical top-down pipeline concentrates on two key issues: 1) how to effectively model the intrinsic interaction between semantic segmentation and instance segmentation, and 2) how to properly handle occlusion for panoptic segmentation. Intuitively, the complementarity between semantic segmentation and instance segmentation can be leveraged to improve the performance. Besides, we notice that using detection/mask scores is insufficient for resolving the occlusion problem. Motivated by these observations, we propose a novel deep panoptic segmentation scheme based on a bidirectional learning pipeline. Moreover, we introduce a plug-and-play occlusion handling algorithm to deal with the occlusion between different object instances. The experimental results on COCO panoptic benchmark validate the effectiveness of our proposed method. Codes will be released soon at https://github.com/Mooonside/BANet.
This paper presents a novel neural architecture search method, called LiDNAS, for generating lightweight monocular depth estimation models. Unlike previous neural architecture search (NAS) approaches, where finding optimized networks are computationally highly demanding, the introduced novel Assisted Tabu Search leads to efficient architecture exploration. Moreover, we construct the search space on a pre-defined backbone network to balance layer diversity and search space size. The LiDNAS method outperforms the state-of-the-art NAS approach, proposed for disparity and depth estimation, in terms of search efficiency and output model performance. The LiDNAS optimized models achieve results superior to compact depth estimation state-of-the-art on NYU-Depth-v2, KITTI, and ScanNet, while being 7%-500% more compact in size, i.e the number of model parameters.
145 - Jun Liu , Qing Li , Rui Cao 2020
Predicting depth from a single image is an attractive research topic since it provides one more dimension of information to enable machines to better perceive the world. Recently, deep learning has emerged as an effective approach to monocular depth estimation. As obtaining labeled data is costly, there is a recent trend to move from supervised learning to unsupervised learning to obtain monocular depth. However, most unsupervised learning methods capable of achieving high depth prediction accuracy will require a deep network architecture which will be too heavy and complex to run on embedded devices with limited storage and memory spaces. To address this issue, we propose a new powerful network with a recurrent module to achieve the capability of a deep network while at the same time maintaining an extremely lightweight size for real-time high performance unsupervised monocular depth prediction from video sequences. Besides, a novel efficient upsample block is proposed to fuse the features from the associated encoder layer and recover the spatial size of features with the small number of model parameters. We validate the effectiveness of our approach via extensive experiments on the KITTI dataset. Our new model can run at a speed of about 110 frames per second (fps) on a single GPU, 37 fps on a single CPU, and 2 fps on a Raspberry Pi 3. Moreover, it achieves higher depth accuracy with nearly 33 times fewer model parameters than state-of-the-art models. To the best of our knowledge, this work is the first extremely lightweight neural network trained on monocular video sequences for real-time unsupervised monocular depth estimation, which opens up the possibility of implementing deep learning-based real-time unsupervised monocular depth prediction on low-cost embedded devices.
94 - Tianrui Liu , Wenhan Luo , Lin Ma 2019
Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, detecting small-scaled pedestrians and occluded pedestrians remains a challenging problem. In this paper, we propose a pedestrian detection method with a couple-network to simultaneously address these two issues. One of the sub-networks, the gated multi-layer feature extraction sub-network, aims to adaptively generate discriminative features for pedestrian candidates in order to robustly detect pedestrians with large variations on scales. The second sub-network targets in handling the occlusion problem of pedestrian detection by using deformable regional RoI-pooling. We investigate two different gate units for the gated sub-network, namely, the channel-wise gate unit and the spatio-wise gate unit, which can enhance the representation ability of the regional convolutional features among the channel dimensions or across the spatial domain, repetitively. Ablation studies have validated the effectiveness of both the proposed gated multi-layer feature extraction sub-network and the deformable occlusion handling sub-network. With the coupled framework, our proposed pedestrian detector achieves state-of-the-art results on the Caltech and the CityPersons pedestrian detection benchmarks.
Recent learning-based approaches, in which models are trained by single-view images have shown promising results for monocular 3D face reconstruction, but they suffer from the ill-posed face pose and depth ambiguity issue. In contrast to previous works that only enforce 2D feature constraints, we propose a self-supervised training architecture by leveraging the multi-view geometry consistency, which provides reliable constraints on face pose and depth estimation. We first propose an occlusion-aware view synthesis method to apply multi-view geometry consistency to self-supervised learning. Then we design three novel loss functions for multi-view consistency, including the pixel consistency loss, the depth consistency loss, and the facial landmark-based epipolar loss. Our method is accurate and robust, especially under large variations of expressions, poses, and illumination conditions. Comprehensive experiments on the face alignment and 3D face reconstruction benchmarks have demonstrated superiority over state-of-the-art methods. Our code and model are released in https://github.com/jiaxiangshang/MGCNet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا