Do you want to publish a course? Click here

Micro-expression spotting: A new benchmark

118   0   0.0 ( 0 )
 Added by Khanh Tran Mr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Micro-expressions (MEs) are brief and involuntary facial expressions that occur when people are trying to hide their true feelings or conceal their emotions. Based on psychology research, MEs play an important role in understanding genuine emotions, which leads to many potential applications. Therefore, ME analysis has become an attractive topic for various research areas, such as psychology, law enforcement, and psychotherapy. In the computer vision field, the study of MEs can be divided into two main tasks, spotting and recognition, which are used to identify positions of MEs in videos and determine the emotion category of the detected MEs, respectively. Recently, although much research has been done, no fully automatic system for analyzing MEs has yet been constructed on a practical level for two main reasons: most of the research on MEs only focuses on the recognition part, while abandoning the spotting task; current public datasets for ME spotting are not challenging enough to support developing a robust spotting algorithm. The contributions of this paper are threefold: (1) we introduce an extension of the SMIC-E database, namely the SMIC-E-Long database, which is a new challenging benchmark for ME spotting; (2) we suggest a new evaluation protocol that standardizes the comparison of various ME spotting techniques; (3) extensive experiments with handcrafted and deep learning-based approaches on the SMIC-E-Long database are performed for baseline evaluation.



rate research

Read More

Facial expressions vary from the visible to the subtle. In recent years, the analysis of micro-expressions $-$ a natural occurrence resulting from the suppression of ones true emotions, has drawn the attention of researchers with a broad range of potential applications. However, spotting microexpressions in long videos becomes increasingly challenging when intertwined with normal or macro-expressions. In this paper, we propose a shallow optical flow three-stream CNN (SOFTNet) model to predict a score that captures the likelihood of a frame being in an expression interval. By fashioning the spotting task as a regression problem, we introduce pseudo-labeling to facilitate the learning process. We demonstrate the efficacy and efficiency of the proposed approach on the recent MEGC 2020 benchmark, where state-of-the-art performance is achieved on CAS(ME)$^{2}$ with equally promising results on SAMM Long Videos.
Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into the micro-expression recognition area. Whilst the higher recognition accuracy achieved, substantial challenges in micro-expression recognition remain. The existence of micro expression in small-local areas on face and limited size of available databases still constrain the recognition accuracy on such emotional facial behavior. In this work, to tackle such challenges, we propose a novel attention mechanism called micro-attention cooperating with residual network. Micro-attention enables the network to learn to focus on facial areas of interest covering different action units. Moreover, coping with small datasets, the micro-attention is designed without adding noticeable parameters while a simple yet efficient transfer learning approach is together utilized to alleviate the overfitting risk. With extensive experimental evaluations on three benchmarks (CASMEII, SAMM and SMIC) and post-hoc feature visualizations, we demonstrate the effectiveness of the proposed micro-attention and push the boundary of automatic recognition of micro-expression.
Micro-expressions (MEs) are involuntary facial movements revealing peoples hidden feelings in high-stake situations and have practical importance in medical treatment, national security, interrogations and many human-computer interaction systems. Early methods for MER mainly based on traditional appearance and geometry features. Recently, with the success of deep learning (DL) in various fields, neural networks have received increasing interests in MER. Different from macro-expressions, MEs are spontaneous, subtle, and rapid facial movements, leading to difficult data collection, thus have small-scale datasets. DL based MER becomes challenging due to above ME characters. To date, various DL approaches have been proposed to solve the ME issues and improve MER performance. In this survey, we provide a comprehensive review of deep micro-expression recognition (MER), including datasets, deep MER pipeline, and the bench-marking of most influential methods. This survey defines a new taxonomy for the field, encompassing all aspects of MER based on DL. For each aspect, the basic approaches and advanced developments are summarized and discussed. In addition, we conclude the remaining challenges and and potential directions for the design of robust deep MER systems. To the best of our knowledge, this is the first survey of deep MER methods, and this survey can serve as a reference point for future MER research.
Micro-Expression Recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features algorithms for micro-expression recognition. However, they do not reveal the specific discriminative characteristics, which lead to sub-optimal performance. This paper proposes a novel Feature Refinement ({FR}) with expression-specific feature learning and fusion for micro-expression recognition. It aims to obtain salient and discriminative features for specific expressions and also predict expression by fusing the expression-specific features. FR consists of an expression proposal module with attention mechanism and a classification branch. First, an inception module is designed based on optical flow to obtain expression-shared features. Second, in order to extract salient and discriminative features for specific expression, expression-shared features are fed into an expression proposal module with attention factors and proposal loss. Last, in the classification branch, labels of categories are predicted by a fusion of the expression-specific features. Experiments on three publicly available databases validate the effectiveness of FR under different protocol. Results on public benchmarks demonstrate that our FR provides salient and discriminative information for micro-expression recognition. The results also show our FR achieves better or competitive performance with the existing state-of-the-art methods on micro-expression recognition.
To address the problem of data inconsistencies among different facial expression recognition (FER) datasets, many cross-domain FER methods (CD-FERs) have been extensively devised in recent years. Although each declares to achieve superior performance, fair comparisons are lacking due to the inconsistent choices of the source/target datasets and feature extractors. In this work, we first analyze the performance effect caused by these inconsistent choices, and then re-implement some well-performing CD-FER and recently published domain adaptation algorithms. We ensure that all these algorithms adopt the same source datasets and feature extractors for fair CD-FER evaluations. We find that most of the current leading algorithms use adversarial learning to learn holistic domain-invariant features to mitigate domain shifts. However, these algorithms ignore local features, which are more transferable across different datasets and carry more detailed content for fine-grained adaptation. To address these issues, we integrate graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation by developing a novel adversarial graph representation adaptation (AGRA) framework. Specifically, it first builds two graphs to correlate holistic and local regions within each domain and across different domains, respectively. Then, it extracts holistic-local features from the input image and uses learnable per-class statistical distributions to initialize the corresponding graph nodes. Finally, two stacked graph convolution networks (GCNs) are adopted to propagate holistic-local features within each domain to explore their interaction and across different domains for holistic-local feature co-adaptation. We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا