Do you want to publish a course? Click here

$F$-thresholds $c^I({bf m})$ for projective curves

62   0   0.0 ( 0 )
 Added by Vijaylaxmi Trivedi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We show that if $R$ is a two dimensional standard graded ring (with the graded maximal ideal ${bf m}$) of characteristic $p>0$ and $Isubset R$ is a graded ideal with $ell(R/I) <infty$ then the $F$-threshold $c^I({bf m})$ can be expressed in terms of a strong HN (Harder-Narasimahan) slope of the canonical syzygy bundle on $mbox{Proj}~R$. Thus $c^I({bf m})$ is a rational number. This gives us a well defined notion, of the $F$-threshold $c^I({bf m})$ in characteristic $0$, in terms of a HN slope of the syzygy bundle on $mbox{Proj}~R$. This generalizes our earlier result (in [TrW]) where we have shown that if $I$ has homogeneous generators of the same degree, then the $F$-threshold $c^I({bf m})$ is expressed in terms of the minimal strong HN slope (in char $p$) and in terms of the minimal HN slope (in char $0$), respectively, of the canonical syzygy bundle on $mbox{Proj}~R$. Here we also prove that, for a given pair $(R, I)$ over a field of characteristic $0$, if $({bf m}_p, I_p)$ is a reduction mod $p$ of $({bf m}, I)$ then $c^{I_p}({bf m}_p) eq c^I_{infty}({bf m})$ implies $c^{I_p}({bf m}_p)$ has $p$ in the denominator, for almost all $p$.



rate research

Read More

We study the holographic dual to $c$-extremization for 2d $(0,2)$ superconformal field theories (SCFTs) that have an AdS$_3$ dual realized in Type IIB with varying axio-dilaton, i.e. F-theory. M/F-duality implies that such AdS$_3$ solutions can be mapped to AdS$_2$ solutions in M-theory, which are holographically dual to superconformal quantum mechanics (SCQM), obtained by dimensional reduction of the 2d SCFTs. We analyze the corresponding map between holographic $c$-extremization in F-theory and $mathcal{I}$-extremization in M-theory, where in general the latter receives corrections relative to the F-theory result.
We study matrix factorizations of locally free coherent sheaves on a scheme. For a scheme that is projective over an affine scheme, we show that homomorphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of a certain mapping complex. Using this explicit description, we give another proof of Orlovs theorem that there is a fully faithful embedding of the homotopy category of matrix factorizations into the singularity category of the corresponding zero subscheme. We also give a complete description of the image of this functor.
180 - Takuro Abe 2020
We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. That includes the addition-deletion and restriction theorem, Yoshinaga-type result, and the division theorem for projective dimensions of hyperplane arrangements. They are generalizations of the free arrangement cases, that can be regarded as the special case of our result when the projective dimension is zero. The keys to prove them are several new methods to determine the surjectivity of the Euler and the Ziegler restriction maps, that is combinatorial when the projective dimension is not maximal for all localizations. Also, we introduce a new class of arrangements in which the projective dimension is comibinatorially determined.
188 - Mandira Mondal , V. Trivedi 2017
For a toric pair $(X, D)$, where $X$ is a projective toric variety of dimension $d-1geq 1$ and $D$ is a very ample $T$-Cartier divisor, we show that the Hilbert-Kunz density function $HKd(X, D)(lambda)$ is the $d-1$ dimensional volume of ${overline {mathcal P}}_D cap {z= lambda}$, where ${overline {mathcal P}}_Dsubset {mathbb R}^d$ is a compact $d$-dimensional set (which is a finite union of convex polytopes). We also show that, for $kgeq 1$, the function $HKd(X, kD)$ can be replaced by another compactly supported continuous function $varphi_{kD}$ which is `linear in $k$. This gives the formula for the associated coordinate ring $(R, {bf m})$: $$lim_{kto infty}frac{e_{HK}(R, {bf m}^k) - e_0(R, {bf m}^k)/d!}{k^{d-1}} = frac{e_0(R, {bf m})}{(d-1)!}int_0^inftyvarphi_D(lambda)dlambda, $$ where $varphi_D$ (see Proposition~1.2) is solely determined by the shape of the polytope $P_D$, associated to the toric pair $(X, D)$. Moreover $varphi_D$ is a multiplicative function for Segre products. This yields explicit computation of $varphi_D$ (and hence the limit), for smooth Fano toric surfaces with respect to anticanonical divisor. In general, due to this formulation in terms of the polytope $P_D$, one can explicitly compute the limit for two dimensional toric pairs and their Segre products. We further show that (Theorem~6.3) the renormailzed limit takes the minimum value if and only if the polytope $P_D$ tiles the space $M_{mathbb R} = {mathbb R}^{d-1}$ (with the lattice $M = {mathbb Z}^{d-1}$). As a consequence, one gets an algebraic formulation of the tiling property of any rational convex polytope.
Let $P_{text{MAX}}(d,s)$ denote the maximum arithmetic genus of a locally Cohen-Macaulay curve of degree $d$ in $mathbb{P}^3$ that is not contained in a surface of degree $<s$. A bound $P(d, s)$ for $P_{text{MAX}}(d,s)$ has been proven by the first author in characteristic zero and then generalized in any characteristic by the third author. In this paper, we construct a large family $mathcal{C}$ of primitive multiple lines and we conjecture that the generic element of $mathcal{C}$ has good cohomological properties. With the aid of emph{Macaulay2} we checked the validity of the conjecture for $s leq 100$. From the conjecture it would follow that $P(d,s)= P_{text{MAX}}(d,s)$ for $d=s$ and for every $d geq 2s-1$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا