Magnetic dipolar interaction between hyperfine clock states in a planar alkali Bose gas


Abstract in English

In atomic systems, clock states feature a zero projection of the total angular momentum and thus a low sensitivity to magnetic fields. This makes them widely used for metrological applications like atomic fountains or gravimeters. Here, we show that a mixture of two such non-magnetic states still display magnetic dipole-dipole interactions. Using high resolution spectroscopy of a planar gas of $^{87}$Rb atoms with a controlled in-plane shape, we explore the effective isotropic and extensive character of these interactions and demonstrate their tunability. Our measurements set strong constraints on the relative values of the s-wave scattering lengths $a_{ij}$ involving the two clock states.

Download