Do you want to publish a course? Click here

PAI-graphene: a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones

105   0   0.0 ( 0 )
 Added by Xin Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the reported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of $7.0 times 10^{5}$ m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band



rate research

Read More

Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.
Materials with Dirac point are so amazing since the charge carriers are massless and have an effective speed of light. Among the reported two-dimensional silicon allotropes, no one showing such exciting nature was proved experimentally. This fact motivates us to search for other such two-dimensional silicon allotropes. As a result, a new single atomic layer thin silicon allotrope was predicted by employing CALYPSO code in this work. This silicon allotrope is composed of eight- membered rings linked by Si-Si bonds and presents buckling formation. Expectedly, the electronic calculation reveals that there exists Dirac point at Fermi energy level. Furthermore, the ab initio molecular dynamics simulations displays that the original atomic configuration can be remained even at an extremely high temperature of 1000 K. We hope this work can expand the family of single atomic layer thin silicon allotropes with Dirac fermions.
Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp3. Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone.
Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB$_2$ is presented. Two-dimensional ZrB$_2$ is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of SOC, is able to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent amount of Dirac cones in a flat structure. The versatility of transition metal d-orbitals combined with the honeycomb lattice provided by the B atoms yields novel features never observed in a two-dimensional material.
Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced Density Functional Theory calculations we can identify it to a $sqrt{3}$x$sqrt{3}$R(30{deg}) germanene layer in coincidence with a $sqrt{7}$x$sqrt{7}$R(19.1{deg}) Au(111) supercell, thence, presenting the first compelling evidence of the birth of a novel synthetic germanium-based cousin of graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا