Do you want to publish a course? Click here

Constraining the in-medium nucleon-nucleon cross section from the width of nuclear giant dipole resonance

55   0   0.0 ( 0 )
 Added by Rui Wang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We develop a new lattice Hamiltonian method for solving the Boltzmann-Uehling-Uhlenbeck (BUU) equation. Adopting the stochastic approach to treat the collision term and using the GPU parallel computing to carry out the calculations allows for a rather high accuracy in evaluating the collision term, especially its Pauli blocking, leading thus to a new level of precision in solving the BUU equation. Applying this lattice BUU method to study the width of giant dipole resonance (GDR) in nuclei, where the accurate treatment of the collision term is crucial, we find that the obtained GDR width of $^{208}{rm Pb}$ shows a strong dependence on the in-medium nucleon-nucleon cross section $sigma_{rm NN}^*$. A very large medium reduction of $sigma_{rm NN}^*$ is needed to reproduce the measured value of the GDR width of $^{208}{rm Pb}$ at the Research Center for Nuclear Physics in Osaka, Japan.



rate research

Read More

The proton-proton momentum correlation function from different rapidity regions are systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400$A$ MeV to 1500$A$ MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the $Lednickacute{y}$ and $Lyuboshitz$ analytical method. In particular, in-medium nucleon-nucleon cross section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influence the proton-proton momentum correlation function which is from the whole rapidity or projectile/target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile/target rapidity and mid-rapidity protons.
147 - S. Bacca , N. Barnea , G. Hagen 2014
We combine the coupled-cluster method and the Lorentz integral transform for the computation of inelastic reactions into the continuum. We show that the bound-state-like equation characterizing the Lorentz integral transform method can be reformulated based on extensions of the coupled-cluster equation-of-motion method, and we discuss strategies for viable numerical solutions. Starting from a chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order, we compute the giant dipole resonances of 4He, 16,22O and 40Ca, truncating the coupled-cluster equation-of-motion method at the two-particle-two-hole excitation level. Within this scheme, we find a low-lying E1 strength in the neutron-rich 22O nucleus, which compares fairly well with data from [Leistenschneider et al. Phys. Rev. Lett. 86, 5442 (2001)]. We also compute the electric dipole polariziability in 40Ca. Deficiencies of the employed Hamiltonian lead to overbinding, too small charge radii and a too small electric dipole polarizability in 40Ca.
We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the bare chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.
We have determined the transparency of the nuclear medium to kaons from $A(e,e^{} K^{+})$ measurements on $^{12}$C, $^{63}$Cu, and $^{197}$Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-transfer squared Q$^2$=1.1 -- 3.0 GeV$^2$. The nuclear transparency was defined as the ratio of measured kaon electroproduction cross sections with respect to deuterium, ($sigma^{A}/sigma^{D}$). We further extracted the atomic number ($A$) dependence of the transparency as parametrized by $T= (A/2)^{alpha-1}$ and, within a simple model assumption, the in-medium effective kaon-nucleon cross sections. The effective cross sections extracted from the electroproduction data are found to be smaller than the free cross sections determined from kaon-nucleon scattering experiments, and the parameter $alpha$ was found to be significantly larger than those obtained from kaon-nucleus scattering. We have included similar comparisons between pion- and proton-nucleon effective cross sections as determined from electron scattering experiments, and pion-nucleus and proton-nucleus scattering data.
A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and to long-lived compound nucleus resonances. We calculated the reaction cross sections for the nucleon induced reactions on the targets $^{40,48}$Ca, $^{58}$Ni, $^{90}$Zr and $^{144}$Sm using the QRPA description of target excitations, coupling to all inelastic open channels, and coupling to all transfer channels corresponding to the formation of a deuteron. The results of such calculations were compared to predictions of a well-established optical potential and with experimental data, reaching very good agreement. The inclusion of couplings to pickup channels were an important contribution to the absorption. For the first time, calculations of excitations account for all of the observed reaction cross-sections, at least for incident energies above 10 MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا