The novel Coronavirus Disease 2019 (COVID-19) is a global pandemic disease spreading rapidly around the world. A robust and automatic early recognition of COVID-19, via auxiliary computer-aided diagnostic tools, is essential for disease cure and control. The chest radiography images, such as Computed Tomography (CT) and X-ray, and deep Convolutional Neural Networks (CNNs), can be a significant and useful material for designing such tools. However, designing such an automated tool is challenging as a massive number of manually annotated datasets are not publicly available yet, which is the core requirement of supervised learning systems. In this article, we propose a robust CNN-based network, called CVR-Net (Coronavirus Recognition Network), for the automatic recognition of the coronavirus from CT or X-ray images. The proposed end-to-end CVR-Net is a multi-scale-multi-encoder ensemble model, where we have aggregated the outputs from two different encoders and their different scales to obtain the final prediction probability. We train and test the proposed CVR-Net on three different datasets, where the images have collected from different open-source repositories. We compare our proposed CVR-Net with state-of-the-art methods, which are trained and tested on the same datasets. We split three datasets into five different tasks, where each task has a different number of classes, to evaluate the multi-tasking CVR-Net. Our model achieves an overall F1-score & accuracy of 0.997 & 0.998; 0.963 & 0.964; 0.816 & 0.820; 0.961 & 0.961; and 0.780 & 0.780, respectively, for task-1 to task-5. As the CVR-Net provides promising results on the small datasets, it can be an auspicious computer-aided diagnostic tool for the diagnosis of coronavirus to assist the clinical practitioners and radiologists. Our source codes and model are publicly available at https://github.com/kamruleee51/CVR-Net.