Do you want to publish a course? Click here

A note on the linear stability of black holes in quadratic gravity

73   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black holes in $f(R)$-gravity are known to be unstable, especially the rotating ones. In particular, an instability develops that looks like the classical black hole bomb mechanism: the linearized modified Einstein equations are characterized by an effective mass that acts like a massive scalar perturbation on the Kerr solution in General Relativity, which is known to yield instabilities. In this note, we consider a special class of $f(R)$ gravity that has the property of being scale-invariant. As a prototype, we consider the simplest case $f(R)=R^2$ and show that, in opposition to the general case, static and stationary black holes are stable, at least at the linear level.



rate research

Read More

We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much simpler form of the field equations in comparison with their expression in the standard spherically symmetric coordinates. We present details of the derivation of this compact form of two ordinary differential field equations for two metric functions. Next, we apply analytical methods and express their solutions as infinite power series expansions. We systematically derive all possible cases admitted by such an ansatz, arriving at six main classes of solutions, and provide recurrent formulas for all the series coefficients. These results allow us to identify the classes containing the Schwarzschild black hole as a special case. It turns out that one class contains only the Schwarzschild black hole, three classes admit the Schwarzschild solution as a special subcase, and two classes are not compatible with the Schwarzschild solution at all since they have strictly nonzero Bach tensor. In our analysis, we naturally focus on the classes containing the Schwarzschild spacetime, in particular on a new family of the Schwarzschild-Bach black holes which possesses one additional non-Schwarzschild parameter corresponding to the value of the Bach tensor invariant on the horizon. We study its geometrical and physical properties, such as basic thermodynamical quantities and tidal effects on free test particles induced by the presence of the Bach tensor. We also compare our results with previous findings in the literature obtained using the standard spherically symmetric coordinates.
144 - Maria Okounkova 2019
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order-reduced Einstein dilaton Gauss-Bonnet gravity (EDGB), a higher curvature beyond-GR theory with motivations in string theory. The stability of single, rotating black holes in EDGB is unknown, but is a necessary condition for being able to simulate binary black hole systems (especially the early-inspiral and late ringdown stages) in EDGB. We thus investigate the stability of rotating black holes in order-reduced EDGB. We evolve the leading-order EDGB scalar field and EDGB spacetime metric deformation on a rotating black hole background, for a variety of spins. We find that the EDGB metric deformation exhibits linear growth, but that this level of growth exponentially converges to zero with numerical resolution. Thus, we conclude that rotating black holes in EDGB are numerically stable to leading-order, thus satisfying our necessary condition for performing binary black hole simulations in EDGB.
We investigate static and rotating charged spherically symmetric solutions in the framework of $f({cal R})$ gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root $f({cal R})$ correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit and one that arises purely from the gravitational modification. The novel black hole solution has a true central singularity which is hidden behind a horizon, however for particular parameter regions it becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.
Black hole solutions in pure quadratic theories of gravity are interesting since they allow to formulate a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type of theory is known as Rainbow Gravity. We coupled the nonlinear electrodynamics to the Rainbow Gravity, defining a new mass function $M(r,epsilon)$, such that we may formulate new classes of spherically symmetric regular black hole solutions, where the curvature invariants are well-behaved in all spacetime. The main differences between the General Relativity and our results in the the Rainbow gravity are: a) The intensity of the electric field is inversely proportional to the energy scale. The higher the energy scale, the lower the electric field intensity; b) the region where the strong energy condition (SEC) is violated decrease as the energy scale increase. The higher the energy scale, closer to the radial coordinate origin SEC is violated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا