Do you want to publish a course? Click here

On the application of the semismooth* Newton method to variational inequalities of the second kind

67   0   0.0 ( 0 )
 Added by Helmut Gfrerer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The paper starts with a concise description of the recently developed semismooth* Newton method for the solution of general inclusions. This method is then applied to a class of variational inequalities of the second kind. As a result, one obtains an implementable algorithm exhibiting a local superlinear convergence. Thereafter we suggest several globally convergent hybrid algorithms in which one combines the semismooth* Newton method with selected splitting algorithms for the solution of monotone variational inequalities. Their efficiency is documented by extensive numerical experiments.



rate research

Read More

An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation. To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.
We introduce Newton-ADMM, a method for fast conic optimization. The basic idea is to view the residuals of consecutive iterates generated by the alternating direction method of multipliers (ADMM) as a set of fixed point equations, and then use a nonsmooth Newton method to find a solution; we apply the basic idea to the Splitting Cone Solver (SCS), a state-of-the-art method for solving generic conic optimization problems. We demonstrate theoretically, by extending the theory of semismooth operators, that Newton-ADMM converges rapidly (i.e., quadratically) to a solution; empirically, Newton-ADMM is significantly faster than SCS on a number of problems. The method also has essentially no tuning parameters, generates certificates of primal or dual infeasibility, when appropriate, and can be specialized to solve specific convex problems.
In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The proposed method can be seen as a hybrid approach combining stochastic semismooth Newton steps and stochastic proximal gradient steps. Two inexact growth conditions are incorporated to monitor the convergence and the acceptance of the semismooth Newton steps and it is shown that the algorithm converges globally to stationary points in expectation. Moreover, under standard assumptions and utilizing random matrix concentration inequalities, we prove that the proposed approach locally turns into a pure stochastic semismooth Newton method and converges r-superlinearly with high probability. We present numerical results and comparisons on $ell_1$-regularized logistic regression and nonconvex binary classification that demonstrate the efficiency of our algorithm.
306 - Hongpeng Sun 2019
Augmented Lagrangian method (also called as method of multipliers) is an important and powerful optimization method for lots of smooth or nonsmooth variational problems in modern signal processing, imaging, optimal control and so on. However, one usually needs to solve the coupled and nonlinear system together and simultaneously, which is very challenging. In this paper, we proposed several semismooth Newton methods to solve the nonlinear subproblems arising in image restoration, which leads to several highly efficient and competitive algorithms for imaging processing. With the analysis of the metric subregularities of the corresponding functions, we give both the global convergence and local linear convergence rate for the proposed augmented Lagrangian methods with semismooth Newton solvers.
The octagonal shrinkage and clustering algorithm for regression (OSCAR), equipped with the $ell_1$-norm and a pair-wise $ell_{infty}$-norm regularizer, is a useful tool for feature selection and grouping in high-dimensional data analysis. The computational challenge posed by OSCAR, for high dimensional and/or large sample size data, has not yet been well resolved due to the non-smoothness and inseparability of the regularizer involved. In this paper, we successfully resolve this numerical challenge by proposing a sparse semismooth Newton-based augmented Lagrangian method to solve the more general SLOPE (the sorted L-one penalized estimation) model. By appropriately exploiting the inherent sparse and low-rank property of the generalized Jacobian of the semismooth Newton system in the augmented Lagrangian subproblem, we show how the computational complexity can be substantially reduced. Our algorithm presents a notable advantage in the high-dimensional statistical regression settings. Numerical experiments are conducted on real data sets, and the results demonstrate that our algorithm is far superior, in both speed and robustness, than the existing state-of-the-art algorithms based on first-order iterative schemes, including the widely used accelerated proximal gradient (APG) method and the alternating direction method of multipliers (ADMM).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا