Do you want to publish a course? Click here

Orbital period modulation in hot Jupiter systems

153   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English
 Authors A. F. Lanza




Ask ChatGPT about the research

We introduce a model for the orbital period modulation in systems with close-by giant planets based on a spin-orbit coupling that transfers angular momentum from the orbit to the rotation of the planet and viceversa. The coupling is produced by a permanent non-axisymmetric gravitational quadrupole moment assumed to be present in the solid core of the planet. We investigate two regimes of internal planetary rotation, that is, when the planet rotates rigidly and when the rotation of its deep interior is time dependent as a consequence of a vacillating or intermittent convection in its outer shell. The model is applied to a sample of very hot Jupiters predicting maximum transit-time deviations from a constant-period ephemeris of approximately 50 seconds in the case of rigid rotation. The transit time variations of WASP-12, currently the only system showing evidence of a non-constant period, cannot be explained by assuming rigid rotation, but can be modelled in the time-dependent internal rotation regime, thus providing an alternative to their interpretation in terms of a tidal decay of the planet orbit.



rate research

Read More

We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright ($V = 11.7$) star TYC 2688-1839-1. A global analysis of the system shows KELT-16 to be an F7V star with $T_textrm{eff} = 6236pm54$ K, $log{g_star} = 4.253_{-0.036}^{+0.031}$, [Fe/H] = -0.002$_{-0.085}^{+0.086}$, $M_star = 1.211_{-0.046}^{+0.043} M_odot$, and $R_star = 1.360_{-0.053}^{+0.064} R_odot$. The planet is a relatively high mass inflated gas giant with $M_textrm{P} = 2.75_{-0.15}^{+0.16} M_textrm{J}$, $R_textrm{P} = 1.415_{-0.067}^{+0.084} R_textrm{J}$, density $rho_textrm{P} = 1.20pm0.18$ g cm$^{-3}$, surface gravity $log{g_textrm{P}} = 3.530_{-0.049}^{+0.042}$, and $T_textrm{eq} = 2453_{-47}^{+55}$ K. The best-fitting linear ephemeris is $T_textrm{C} = 2457247.24791pm0.00019$ BJD$_{tdb}$ and $P = 0.9689951 pm 0.0000024$ d. KELT-16b joins WASP-18b, -19b, -43b, -103b, and HATS-18b as the only giant transiting planets with $P < 1$ day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by HST, Spitzer, and eventually JWST. For example, as a hotter, higher mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature-pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass-metallicity relation of the Solar System gas giants to higher masses. KELT-16b currently orbits at a mere $sim$ 1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few $times 10^{5}$ years (for a stellar tidal quality factor of $Q_* = 10^5$). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai-Lidov oscillations played a role in driving KELT-16b inward to its current precarious orbit.
140 - C. A. Watson 2010
Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on timescales such that they may be confused with variations caused by light-time travel effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.
We report the discovery of a new ultra-short period transiting hot Jupiter from the Next Generation Transit Survey (NGTS). NGTS-10b has a mass and radius of $2.162,^{+0.092}_{-0.107}$ M$_{rm J}$ and $1.205,^{+0.117}_{-0.083}$ R$_{rm J}$ and orbits its host star with a period of $0.7668944pm0.0000003$ days, making it the shortest period hot Jupiter yet discovered. The host is a $10.4pm2.5$ Gyr old K5V star ($T_mathrm{eff}$=$4400pm100$,K) of Solar metallicity ([Fe/H] = $-0.02pm0.12$,dex) showing moderate signs of stellar activity. NGTS-10b joins a short list of ultra-short period Jupiters that are prime candidates for the study of star-planet tidal interactions. NGTS-10b orbits its host at just $1.46pm0.18$ Roche radii, and we calculate a median remaining inspiral time of $38$,Myr and a potentially measurable transit time shift of $7$,seconds over the coming decade, assuming a stellar tidal quality factor $Q_{rm s}=2times10^{7}$.
The current paradigm to explain the presence of Jupiters with small orbital periods (P $<$ 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the possibility of in situ formation. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of $alpha$ elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding $p$-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, $<$ 0.01, 0.81, and 0.16 for metallicity, $alpha$, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet hosts samples that might affect the abundance comparison. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger $alpha$ abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.
76 - A. F. Lanza 2019
We introduce a new model to explain the modulation of the orbital period observed in close stellar binary systems based on an angular momentum exchange between the spin of the active component and the orbital motion. This spin-orbit coupling is not due to tides, but is produced by a non-axisymmetric component of the gravitational quadrupole moment of the active star due to a persistent non-axisymmetric internal magnetic field. The proposed mechanism easily satisfies all the energy constraints having an energy budget about 100-1000 times smaller than those of previously proposed models and is supported by the observations of persistent active longitudes in the active components of close binary systems. We present preliminary applications to three well-studied binary systems to illustrate the model. The case of stars with hot Jupiters is also discussed showing that no significant orbital period modulation is generally expected on the basis of the proposed model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا