Do you want to publish a course? Click here

Avalanches in an extended Schelling model: an explanation of urban gentrification

52   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we characterize sudden increases in the land price of certain urban areas, a phenomenon causing gentrification, via an extended Schelling model. An initial price rise forces some of the disadvantaged inhabitants out of the area, creating vacancies which other groups find economically attractive. Intolerance issues forces further displacements, possibly giving rise to an avalanche. We consider how gradual changes in the economic environment affect the urban architecture through such avalanche processes, when agents may enter or leave the city freely. The avalanches are characterized by power-law histograms, as it is usually the case in self-organized critical phenomena.



rate research

Read More

Urban segregation of different communities, like blacks and whites in the USA, has been simulated by Ising-like models since Schelling 1971. This research was accompanied by a scientific segregation, with sociologists and physicists ignoring each other until 2000. We review recent progress and also present some new two-temperature multi-cultural simulations.
We here study the Battle of the Sexes game, a textbook case of asymmetric games, on small networks. Due to the conflicting preferences of the players, analytical approaches are scarce and most often update strategies are employed in numerical simulations of repeated games on networks until convergence is reached. As a result, correlations between the choices of the players emerge. Our approach is to study these correlations with a generalized Ising model. Using the response strategy framework, we describe how the actions of the players can bring the network into a steady configuration, starting from an out-of-equilibrium one. We obtain these configurations using game-theoretical tools, and describe the results using Ising parameters. We exhaust the two-player case, giving a detailed account of all the equilibrium possibilities. Going to three players, we generalize the Ising model and compare the equilibrium solutions of three representative types of network. We find that players that are not directly linked retain a degree of correlation that is proportional to their initial correlation. We also find that the local network structure is the most relevant for small values of the magnetic field and the interaction strength of the Ising model. Finally, we conclude that certain parameters of the equilibrium states are network independent, which opens up the possibility of an analytical description of asymmetric games played on networks.
Mathematical models are formal and simplified representations of the knowledge related to a phenomenon. In classical epidemic models, a neglected aspect is the heterogeneity of disease transmission and progression linked to the viral load of each infectious individual. Here, we attempt to investigate the interplay between the evolution of individuals viral load and the epidemic dynamics from a theoretical point of view. In the framework of multi-agent systems, we propose a particle stochastic model describing the infection transmission through interactions among agents and the individual physiological course of the disease. Agents have a double microscopic state: a discrete label, that denotes the epidemiological compartment to which they belong and switches in consequence of a Markovian process, and a microscopic trait, representing a normalized measure of their viral load, that changes in consequence of binary interactions or interactions with a background. Specifically, we consider Susceptible--Infected--Removed--like dynamics where infectious individuals may be isolated from the general population and the isolation rate may depend on the viral load sensitivity and frequency of tests. We derive kinetic evolution equations for the distribution functions of the viral load of the individuals in each compartment, whence, via suitable upscaling procedures, we obtain a macroscopic model for the densities and viral load momentum. We perform then a qualitative analysis of the ensuing macroscopic model, and we present numerical tests in the case of both constant and viral load-dependent isolation control. Also, the matching between the aggregate trends obtained from the macroscopic descriptions and the original particle dynamics simulated by a Monte Carlo approach is investigated.
Many socioeconomic studies have been carried out to explain the phenomenon of gentrification. Although results of these works shed light on the process around this phenomenon, a perspective which focuses on the relationship between city form and gentrification is still missing. With this paper we try to address this gap by studying and comparing, through classic methods of mathematical statistics, morphological features of five London gentrified neighbourhoods. Outcomes confirm that areas which have undergone gentrification display similar and recognizable morphological patterns in terms of urban type and geographical location of main and local roads as well as businesses. These initial results confirm findings from previous research in urban sociology, and highlight the role of urban form in contributing to shape dynamics of non-spatial nature in cities.
The dynamics of opinion formation in a society is a complex phenomenon where many variables play an important role. Recently, the influence of algorithms to filter which content is fed to social networks users has come under scrutiny. Supposedly, the algorithms promote marketing strategies, but can also facilitate the formation of filters bubbles in which a user is most likely exposed to opinions that conform to their own. In the two-state majority-vote model an individual adopts an opinion contrary to the majority of its neighbors with probability $q$, defined as the noise parameter. Here, we introduce a visibility parameter $V$ in the dynamics of the majority-vote model, which equals the probability of an individual ignoring the opinion of each one of its neighbors. For $V=0.5$ each individual will, on average, ignore the opinion of half of its neighboring nodes. We employ Monte Carlo simulations to calculate the critical noise parameter as a function of the visibility $q_c(V)$ and obtain the phase diagram of the model. We find that the critical noise is an increasing function of the visibility parameter, such that a lower value of $V$ favors dissensus. Via finite-size scaling analysis we obtain the critical exponents of the model, which are visibility-independent, and show that the model belongs to the Ising universality class. We compare our results to the case of a network submitted to a static site dilution, and find that the limited visibility model is a more subtle way of inducing opinion polarization in a social network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا