Do you want to publish a course? Click here

Atom probe characterisation of segregation driven Cu and Mn-Ni-Si co-precipitation in neutron irradiated T91 tempered-martensitic steel

131   0   0.0 ( 0 )
 Added by Thomas P Davis
 Publication date 2020
  fields Physics
and research's language is English
 Authors T. P. Davis




Ask ChatGPT about the research

The T91 grade and similar 9Cr tempered-martensitic steels (also known as ferritic-martensitic) are leading candidate structural alloys for fast fission nuclear and fusion power reactors. At low temperatures (300 to 400 $^circ$C) neutron irradiation hardens and embrittles these steels, therefore it is important to investigate the origin of this mode of life limiting property degradation. T91 steel specimens were separately neutron irradiated to 2.14 dpa at 327 $^circ$C and 8.82 dpa at 377 $^circ$C in the Idaho National Laboratory Advanced Test Reactor. Atom probe tomography was used to investigate the segregation driven formation of Mn-Ni-Si-rich (MNSPs) and Cu-rich (CRP) co-precipitates. The precipitates increase in size and, slightly, in volume fraction at the higher irradiation temperature and dose, while their corresponding compositions were very similar, falling near the Si(Mn,Ni) phase field in the Mn-Ni-Si projection of the Fe-based quaternary phase diagram. While the structure of the precipitates has not been characterized, this composition range is distinctly different than that of the typically cited G-phase. The precipitates are composed of CRP with MNSP appendages. Such features are often observed in neutron irradiated reactor pressure vessel (RPV) steels. However, the Si, Ni, Mn, P and Cu solutes concentrations are lower in the T91 than in typical RPV steels. Thus, in T91 precipitation primarily takes place in solute segregated regions of line and loop dislocations. These results are consistent with the model for radiation induced segregation driven precipitation of MNSPs proposed by Ke et al. Cr-rich alpha prime ($alpha$) phase formation was not observed.

rate research

Read More

We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni or Cu in FePt-L10 bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content whilst those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L10 alloys.
A study of magnetic hysteresis and Giant magnetoimpedance (GMI) in amorphous glass covered Co-Si-B and Co-Mn-Si-B wires is presented. The wires, about 10 microns in diameter, were obtained by glass-coated melt spinning technique. Samples with positive magnetostriction (MS) have a rectangular bistable hysteresis loop. A smooth hysteresis loop is observed for wires with nearly zero MS. When MS is negative, almost no hysteresis is observed. The GMI was measured in the frequency range between 20 Hz and 30 MHz. The shapes of the impedance versus field curves are qualitatively similar to each other for both positive and zero MS samples. Impedance is maximum at zero field, and decreases sharply in the range 10-20 Oe. For the negative MS wires, when the driving current is small, the impedance is maximum at a finite external field. The position of the maximum approaches zero with increasing current. The contributions of the moment rotation and domain wall motion in the three cases are discussed.
We report magnetization and differential thermal analysis measurements as a function of pressure accross the martensitic transition in magnetically superelastic Ni-Mn-In alloys. It is found that the properties of the martensitic transformation are significantly affected by the application of pressure. All transition temperatures shift to higher values with increasing pressure. The largest rate of temperature shift with pressure has been found for Ni$_{50}$Mn$_{34}$In$_{16}$ as a consequence of its small entropy change at the transition. Such a strong pressure dependence of the transition temperature opens up the possibility of inducing the martensitic transition by applying relatively low hydrostatic pressures.
Space-grade Si and GaAs solar cells were irradiated with 15 and 40 MeV lithium ions. Dark-IV analysis (with and without illumination) reveals differences in the effects of such irradiation on the different cell types
Magnetic properties of silver(II) compounds have been of interest in recent years. In covalent compounds, the main mechanism of interaction between paramagnetic sites is the superexchange via the connecting ligand. To date, little is known of magnetic interactions between Ag(II) cations and other paramagnetic centres. It is because only a few compounds bearing Ag(II) cation and other paramagnetic transition metal cation are known experimentally. Recently the high-pressure synthesis of ternary silver(II) fluorides with 3d metal cations AgMF4 (M = Co, Ni, Cu) was predicted to be feasible. Here, we investigate the magnetic properties of these compounds in their diverse polymorphic forms. Using well established computational methods we predict superexchange pathways in AgMF4, evaluate coupling constants and calculate the impact of Ag(II) presence on superexchange between the other cations. The results indicate that the low-pressure form of AgCuF4, the only composed of stacked layers as the parent AgF2, would hold mainly Ag-Ag and Cu-Cu superexchange interactions. Upon compression, or with the nickel(II) cation, the Ag-M interactions in AgMF4 intensify, which is emphasized by an increase of Ag-M superexchange coupling constants and Ag-F-M angles. All the strongest Ag-M superexchange pathways are quasi-linear, leading to the formation of antiferromagnetic chains along the crystallographic directions. The impact of Ag(II) on M-M superexchange turns out to be moderate, due to factors connected to the crystal structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا