Do you want to publish a course? Click here

Fine-Grained Image Captioning with Global-Local Discriminative Objective

178   0   0.0 ( 0 )
 Added by Tianshui Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Significant progress has been made in recent years in image captioning, an active topic in the fields of vision and language. However, existing methods tend to yield overly general captions and consist of some of the most frequent words/phrases, resulting in inaccurate and indistinguishable descriptions (see Figure 1). This is primarily due to (i) the conservative characteristic of traditional training objectives that drives the model to generate correct but hardly discriminative captions for similar images and (ii) the uneven word distribution of the ground-truth captions, which encourages generating highly frequent words/phrases while suppressing the less frequent but more concrete ones. In this work, we propose a novel global-local discriminative objective that is formulated on top of a reference model to facilitate generating fine-grained descriptive captions. Specifically, from a global perspective, we design a novel global discriminative constraint that pulls the generated sentence to better discern the corresponding image from all others in the entire dataset. From the local perspective, a local discriminative constraint is proposed to increase attention such that it emphasizes the less frequent but more concrete words/phrases, thus facilitating the generation of captions that better describe the visual details of the given images. We evaluate the proposed method on the widely used MS-COCO dataset, where it outperforms the baseline methods by a sizable margin and achieves competitive performance over existing leading approaches. We also conduct self-retrieval experiments to demonstrate the discriminability of the proposed method.



rate research

Read More

Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among subcategories. However, they generally have two limitations: (1) Discriminative localization relies on region proposal methods to hypothesize the locations of discriminative regions, which are time-consuming. (2) The training of discriminative localization depends on object or part annotations, which are heavily labor-consuming. It is highly challenging to address the two key limitations simultaneously, and existing methods only focus on one of them. Therefore, we propose a weakly supervised discriminative localization approach (WSDL) for fast fine-grained image classification to address the two limitations at the same time, and its main advantages are: (1) n-pathway end-to-end discriminative localization network is designed to improve classification speed, which simultaneously localizes multiple different discriminative regions for one image to boost classification accuracy, and shares full-image convolutional features generated by region proposal network to accelerate the process of generating region proposals as well as reduce the computation of convolutional operation. (2) Multi-level attention guided localization learning is proposed to localize discriminative regions with different focuses automatically, without using object and part annotations, avoiding the labor consumption. Different level attentions focus on different characteristics of the image, which are complementary and boost the classification accuracy. Both are jointly employed to simultaneously improve classification speed and eliminate dependence on object and part annotations. Compared with state-of-the-art methods on 2 widely-used fine-grained image classification datasets, our WSDL approach achieves the best performance.
208 - Anwen Hu , Shizhe Chen , Qin Jin 2021
For an image with multiple scene texts, different people may be interested in different text information. Current text-aware image captioning models are not able to generate distinctive captions according to various information needs. To explore how to generate personalized text-aware captions, we define a new challenging task, namely Question-controlled Text-aware Image Captioning (Qc-TextCap). With questions as control signals, this task requires models to understand questions, find related scene texts and describe them together with objects fluently in human language. Based on two existing text-aware captioning datasets, we automatically construct two datasets, ControlTextCaps and ControlVizWiz to support the task. We propose a novel Geometry and Question Aware Model (GQAM). GQAM first applies a Geometry-informed Visual Encoder to fuse region-level object features and region-level scene text features with considering spatial relationships. Then, we design a Question-guided Encoder to select the most relevant visual features for each question. Finally, GQAM generates a personalized text-aware caption with a Multimodal Decoder. Our model achieves better captioning performance and question answering ability than carefully designed baselines on both two datasets. With questions as control signals, our model generates more informative and diverse captions than the state-of-the-art text-aware captioning model. Our code and datasets are publicly available at https://github.com/HAWLYQ/Qc-TextCap.
We study the problem of weakly supervised grounded image captioning. That is, given an image, the goal is to automatically generate a sentence describing the context of the image with each noun word grounded to the corresponding region in the image. This task is challenging due to the lack of explicit fine-grained region word alignments as supervision. Previous weakly supervised methods mainly explore various kinds of regularization schemes to improve attention accuracy. However, their performances are still far from the fully supervised ones. One main issue that has been ignored is that the attention for generating visually groundable words may only focus on the most discriminate parts and can not cover the whole object. To this end, we propose a simple yet effective method to alleviate the issue, termed as partial grounding problem in our paper. Specifically, we design a distributed attention mechanism to enforce the network to aggregate information from multiple spatially different regions with consistent semantics while generating the words. Therefore, the union of the focused region proposals should form a visual region that encloses the object of interest completely. Extensive experiments have demonstrated the superiority of our proposed method compared with the state-of-the-arts.
The existing image captioning approaches typically train a one-stage sentence decoder, which is difficult to generate rich fine-grained descriptions. On the other hand, multi-stage image caption model is hard to train due to the vanishing gradient problem. In this paper, we propose a coarse-to-fine multi-stage prediction framework for image captioning, composed of multiple decoders each of which operates on the output of the previous stage, producing increasingly refined image descriptions. Our proposed learning approach addresses the difficulty of vanishing gradients during training by providing a learning objective function that enforces intermediate supervisions. Particularly, we optimize our model with a reinforcement learning approach which utilizes the output of each intermediate decoders test-time inference algorithm as well as the output of its preceding decoder to normalize the rewards, which simultaneously solves the well-known exposure bias problem and the loss-evaluation mismatch problem. We extensively evaluate the proposed approach on MSCOCO and show that our approach can achieve the state-of-the-art performance.
139 - Li Tian , Liyan Ma , Zhijie Wen 2020
Diabetic retinopathy (DR) is one of the leading causes of blindness. However, no specific symptoms of early DR lead to a delayed diagnosis, which results in disease progression in patients. To determine the disease severity levels, ophthalmologists need to focus on the discriminative parts of the fundus images. In recent years, deep learning has achieved great success in medical image analysis. However, most works directly employ algorithms based on convolutional neural networks (CNNs), which ignore the fact that the difference among classes is subtle and gradual. Hence, we consider automatic image grading of DR as a fine-grained classification task, and construct a bilinear model to identify the pathologically discriminative areas. In order to leverage the ordinal information among classes, we use an ordinal regression method to obtain the soft labels. In addition, other than only using a categorical loss to train our network, we also introduce the metric loss to learn a more discriminative feature space. Experimental results demonstrate the superior performance of the proposed method on two public IDRiD and DeepDR datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا