Do you want to publish a course? Click here

FPGA-Based Hardware Accelerator of Homomorphic Encryption for Efficient Federated Learning

286   0   0.0 ( 0 )
 Added by Zhaoxiong Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the increasing awareness of privacy protection and data fragmentation problem, federated learning has been emerging as a new paradigm of machine learning. Federated learning tends to utilize various privacy preserving mechanisms to protect the transferred intermediate data, among which homomorphic encryption strikes a balance between security and ease of utilization. However, the complicated operations and large operands impose significant overhead on federated learning. Maintaining accuracy and security more efficiently has been a key problem of federated learning. In this work, we investigate a hardware solution, and design an FPGA-based homomorphic encryption framework, aiming to accelerate the training phase in federated learning. The root complexity lies in searching for a compact architecture for the core operation of homomorphic encryption, to suit the requirement of federated learning about high encryption throughput and flexibility of configuration. Our framework implements the representative Paillier homomorphic cryptosystem with high level synthesis for flexibility and portability, with careful optimization on the modular multiplication operation in terms of processing clock cycle, resource usage and clock frequency. Our accelerator achieves a near-optimal execution clock cycle, with a better DSP-efficiency than existing designs, and reduces the encryption time by up to 71% during training process of various federated learning models.



rate research

Read More

Homomorphic encryption (HE) is a promising privacy-preserving technique for cross-silo federated learning (FL), where organizations perform collaborative model training on decentralized data. Despite the strong privacy guarantee, general HE schemes result in significant computation and communication overhead. Prior works employ batch encryption to address this problem, but it is still suboptimal in mitigating communication overhead and is incompatible with sparsification techniques. In this paper, we propose FLASHE, an HE scheme tailored for cross-silo FL. To capture the minimum requirements of security and functionality, FLASHE drops the asymmetric-key design and only involves modular addition operations with random numbers. Depending on whether to accommodate sparsification techniques, FLASHE is optimized in computation efficiency with different approaches. We have implemented FLASHE as a pluggable module atop FATE, an industrial platform for cross-silo FL. Compared to plaintext training, FLASHE slightly increases the training time by $leq6%$, with no communication overhead.
Federated learning (FL) is a distributed machine learning paradigm that allows clients to collaboratively train a model over their own local data. FL promises the privacy of clients and its security can be strengthened by cryptographic methods such as additively homomorphic encryption (HE). However, the efficiency of FL could seriously suffer from the statistical heterogeneity in both the data distribution discrepancy among clients and the global distribution skewness. We mathematically demonstrate the cause of performance degradation in FL and examine the performance of FL over various datasets. To tackle the statistical heterogeneity problem, we propose a pluggable system-level client selection method named Dubhe, which allows clients to proactively participate in training, meanwhile preserving their privacy with the assistance of HE. Experimental results show that Dubhe is comparable with the optimal greedy method on the classification accuracy, with negligible encryption and communication overhead.
Fully Homomorphic Encryption (FHE) allows computing on encrypted data, enabling secure offloading of computation to untrusted serves. Though it provides ideal security, FHE is expensive when executed in software, 4 to 5 orders of magnitude slower than computing on unencrypted data. These overheads are a major barrier to FHEs widespread adoption. We present F1, the first FHE accelerator that is programmable, i.e., capable of executing full FHE programs. F1 builds on an in-depth architectural analysis of the characteristics of FHE computations that reveals acceleration opportunities. F1 is a wide-vector processor with novel functional units deeply specialized to FHE primitives, such as modular arithmetic, number-theoretic transforms, and structured permutations. This organization provides so much compute throughput that data movement becomes the bottleneck. Thus, F1 is primarily designed to minimize data movement. The F1 hardware provides an explicitly managed memory hierarchy and mechanisms to decouple data movement from execution. A novel compiler leverages these mechanisms to maximize reuse and schedule off-chip and on-chip data movement. We evaluate F1 using cycle-accurate simulations and RTL synthesis. F1 is the first system to accelerate complete FHE programs and outperforms state-of-the-art software implementations by gmean 5400x and by up to 17000x. These speedups counter most of FHEs overheads and enable new applications, like real-time private deep learning in the cloud.
Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.
Set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for safety-critical systems. However, it requires computationally expensive operations, which in turn often requires outsourcing of these operations to cloud-computing platforms. Consequently, this raises some concerns with regard to sharing sensitive information and measurements. This paper presents the first privacy-preserving set-based estimation protocols using partially homomorphic encryption in which we preserve the privacy of the set of all possible estimates and the measurements. We consider a linear discrete-time dynamical system with bounded modeling and measurement uncertainties without any other statistical assumptions. We represent sets by zonotopes and constrained zonotopes as they can compactly represent high-dimensional sets and are closed under linear maps and Minkowski addition. By selectively encrypting some parameters of the used set representations, we are able to intersect sets in the encrypted domain, which enables guaranteed state estimation while ensuring the privacy goals. In particular, we show that our protocols achieve computational privacy using formal cryptographic definitions of computational indistinguishability. We demonstrate the efficiency of our approach by localizing a mobile quadcopter using custom ultra-wideband wireless devices. Our code and data are available online.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا