Artificial spin ices are frustrated spin systems that can be engineered, wherein fine tuning of geometry and topology has allowed the design and characterization of exotic emergent phenomena at the constituent level. Here we report a realization of spin ice in a lattice of superconducting qubits. Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal fluctuations. The ground state is classically described by the ice rule, and we achieve control over a fragile degeneracy point leading to a Coulomb phase. The ability to pin individual spins allows us to demonstrate Gausss law for emergent effective monopoles in two dimensions. The demonstrated qubit control lays the groundwork for potential future study of topologically protected artificial quantum spin liquids.