No Arabic abstract
In this paper, we propose a geometric shaping (GS) strategy to design 8, 16, 32 and 64-ary modulation formats for the optical fibre channel impaired by both additive white Gaussian (AWGN) and phase noise. The constellations were optimised to maximise generalised mutual information (GMI) using a mismatched channel model. The presented formats demonstrate an enhanced signal-to-noise ratio (SNR) tolerance in high phase noise regimes when compared with their quadrature amplitude modulation (QAM) or AWGN-optimised counterparts. By putting the optimisation results in the context of the 400ZR implementation agreement, we show that GS alone can either relax the laser linewidth (LW) or carrier phase estimation (CPE) requirements of 400 Gbit/s transmission links and beyond. Following the GMI validation, the performance of the presented formats was examined in terms of post forward error correction (FEC) bit-error-rate (BER) for a soft decision (SD) extended Hamming code (128, 120), implemented as per the 400ZR implementation agreement. We demonstrate gains of up to 1.2 dB when compared to the 64-ary AWGN shaped formats.
The problem of recovering a structured signal from its linear measurements in the presence of speckle noise is studied. This problem appears in many imaging systems such as synthetic aperture radar and optical coherence tomography. The current acquisition technology oversamples signals and converts the problem into a denoising problem with multiplicative noise. However, this paper explores the possibility of reducing the number of measurements below the ambient dimension of the signal. The sophistications that appear in the study of multiplicative noises have so far impeded theoretical analysis of such problems. This paper aims to present the first theoretical result regarding the recovery of signals from their undersampled measurements under the speckle noise. It is shown that if the signal class is structured, in the sense that the signals can be compressed efficiently, then one can obtain accurate estimates of the signal from fewer measurements than the ambient dimension. We demonstrate the effectiveness of the methods we propose through simulation results.
A new geometric shaping method is proposed, leveraging unsupervised machine learning to optimize the constellation design. The learned constellation mitigates nonlinear effects with gains up to 0.13 bit/4D when trained with a simplified fiber channel model.
Motivated by applications in reliable and secure communication, we address the problem of tiling (or partitioning) a finite constellation in $mathbb{Z}_{2^L}^n$ by subsets, in the case that the constellation does not possess an abelian group structure. The property that we do require is that the constellation is generated by a linear code through an injective mapping. The intrinsic relation between the code and the constellation provides a sufficient condition for a tiling to exist. We also present a necessary condition. Inspired by a result in group theory, we discuss results on tiling for the particular case when the finer constellation is an abelian group as well.
Unconventional receivers enable reduction of error rates in optical communication systems below the standard quantum limit (SQL) by implementing discrimination strategies for constellation symbols that go beyond the canonical measurement of information-carrying quantities such as the intensity or quadratures of the electromagnetic field. An example of such a strategy is presented here for average-power constrained binary constellations propagating through a phase noise channel. The receiver, implementing a coherent displacement in the complex amplitude plane followed by photon number resolved detection, can be viewed as an interpolation between direct detection and homodyne detection.
We study the simplest optomechanical system in the presence of laser phase noise using the covariance matrix formalism. We show that the destructive effect of the phase noise is especially strong in the bistable regime. This explains why ground state cooling is still possible in the presence of phase noise, as it happens far away from the bistable regime. On the other hand, the optomechanical entanglement is strongly affected by phase noise.