Do you want to publish a course? Click here

The Timing Behavior of the Central Compact Object Pulsar 1E 1207.4-5209

92   0   0.0 ( 0 )
 Added by E. V. Gotthelf
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 20 years of timing observations for 1E 1207.4-5209, the central compact object in supernova remnant PKS 1209-51/52, to follow up on our detection of an unexpected timing glitch in its spin-down. Using new XMM-Newton and NICER observations of 1E 1207.4-5209, we now find that the phase ephemeris can be well modelled by either two small glitches, or extreme timing noise. The implied magnitudes of the frequency glitches are Delta f/f = (9+-2)E-10 and Delta f/f = (3.7+/-0.7)E-10, at epochs 2010.9 and 2014.4, respectively. The updated timing solutions also rule out our previous suggestion of a large glitch in the frequency derivative fdot. No other canonical pulsar with such a small spin-down rate (fdot = -1.2E-16 Hz/s) or surface dipole magnetic field strength (B_s = 9.8E10 G) has been observed to glitch; the glitch activity parameter of 1E 1207.4-5209 is larger than that of more energetic pulsars. Alternative parameterizations that do not involve glitches can fit the data, but they have timing residuals or a second frequency derivative fddot that are orders of magnitude larger than in pulsars with similar spin-down parameters. These timing properties of 1E 1207.4-5209 further motivate the leading theory of central compact objects, that an initial B-field of normal strength was buried in the neutron star crust by fallback of supernova ejecta, suppressing the surface dipole field. The slow reemergence of the buried field may be involved in triggering glitches or excess timing noise.



rate research

Read More

Since its discovery as a pulsar in 2000, the central compact object (CCO) 1E 1207.4-5209 in the supernova remnant PKS 1209-51/52 had been a stable 0.424 s rotator with an extremely small spin-down rate and weak (Bs ~ 9E10 G) surface dipole magnetic field. In 2016 we observed a glitch from 1E 1207.4-5209 of at least Delta f/f = (2.8+/-0.4)E-9, which is typical in size for the general pulsar population. However, glitch activity is closely correlated with spin-down rate fdot, and pulsars with fdot as small as that of 1E 1207.4-5209 are never seen to glitch. Unlike in glitches of ordinary pulsars, there may have been a large increase in fdot as well. The thermal X-ray spectrum of 1E 1207.4-5209, with its unique cyclotron absorption lines that measure the surface magnetic field strength, did not show any measurable change after the glitch, which rules out a major disruption in the dipole field as a cause or result of the glitch. A leading theory of the origin and evolution of CCOs, involving prompt burial of the magnetic field by fall-back of supernova ejecta, might hold the explanation for the glitch.
The strange timing property of X-ray pulsar 1E 1207.4-5209 can be explained by the hypothesis that it is a member of an ultra-compact binary system. This paper confronts the ultra-compact assumption with the observed properties of this pulsar. The gravitational potential well of an ultra-compact binary can enlarge the corotation radius and thus make it possible for accreting material to reach the surface of the NS in the low accretion rate case. Thus the generation of the absorption features should be similar to the case of accreting pulsars. The close equality of the energy loss by fast cooling of the postsupernova neutron star and the energy dissipation needed for a wide binary evolving to an ultra-compact binary demonstrates that the ultra-compact binary may be formed in 10-100yr after the second supernova explosion. Moreover, the ultra-compact binary hypothesis can well explain the the absence of optical counterpart and the observed two black body emissions. We suggest a simple method which can test the binary nature directly with XMM-Newton and Chandra observations. We further predict that the temperature of the two black bodies should vary at different pulse periods.
We have analyzed the archival Chandra X-ray Observatory observations of the compact feature in the Small Magellanic Cloud supernova remnant (SNR) 1E 0102.2-7219 which has recently been suggested to be the Central Compact Object remaining after the supernova explosion. In our analysis, we have used appropriate, time-dependent responses for each of the archival observations, modeled the background instead of subtracting it, and have fit unbinned spectra to preserve the maximal spectral information. The spectrum of this feature is similar to the spectrum of the surrounding regions which have significantly enhanced abundances of O, Ne, & Mg. We find that the previously suggested blackbody model is inconsistent with the data as Monte Carlo simulations indicate that more than 99% of the simulated data sets have a test statistic value lower than that of the data. The spectrum is described adequately by a non-equilibrium ionization thermal model with two classes of models that fit the data equally well. One class of models has a temperature of $kTsim0.79$ keV, an ionization timescale of $sim3times10^{11},mathrm{cm}^{-3}mathrm{s}$, and marginal evidence for enhanced abundances of O and Ne and the other has a temperature of $kTsim0.91$ keV, an ionization timescale of $sim7times10^{10},mathrm{cm}^{-3}mathrm{s}$, and abundances consistent with local interstellar medium values. We also performed an image analysis and find that the spatial distribution of the counts is not consistent with that of a point source. The hypothesis of a point source distribution can be rejected at the 99.9% confidence level. Therefore this compact feature is most likely a knot of O and Ne rich ejecta associated with the reverse shock.
While pulsars possess exceptional rotational stability, large scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the timing noise properties of 300 bright southern-sky radio pulsars that have been observed over 1.0-4.8 years by the upgraded Molonglo Observatory Synthesis Telescope (MOST). We reanalysed the spin and spin-down changes associated with nine previously reported pulsar glitches, report the discovery of three new glitches and four unusual glitch-like events in the rotational evolution of PSR J1825$-$0935. We develop a refined Bayesian framework for determining how red noise strength scales with pulsar spin frequency ($ u$) and spin-down frequency ($dot{ u}$), which we apply to a sample of 280 non-recycled pulsars. With this new method and a simple power-law scaling relation, we show that red noise strength scales across the non-recycled pulsar population as $ u^{a} |dot{ u}|^{b}$, where $a = -0.84^{+0.47}_{-0.49}$ and $b = 0.97^{+0.16}_{-0.19}$. This method can be easily adapted to utilise more complex, astrophysically motivated red noise models. Lastly, we highlight our timing of the double neutron star PSR J0737$-$3039, and the rediscovery of a bright radio pulsar originally found during the first Molonglo pulsar surveys with an incorrectly catalogued position.
To examine the previously claimed fast cooling of the Central Compact Object (CCO) in the Cas A supernova remnant (SNR), we analyzed two Chandra observations of this CCO, taken in a setup minimizing instrumental spectral distortions. We fit the two CCO X-ray spectra from 2006 and 2012 with hydrogen and carbon neutron star atmosphere models. The temperature and flux changes in the 5.5 years between the two epochs depend on the adopted constraints on the fitting parameters and the uncertainties of the effective area calibrations. If we allow a change of the equivalent emitting region size, R_Em, the effective temperature remains essentially the same. If R_Em is held constant, the best-fit temperature change is negative, but its statistical significance ranges from 0.8sigma to 2.5sigma, depending on the model. If we assume that the optical depth of the ACIS filter contaminant in 2012 was +/-10% different from its default calibration value, the significance of the temperature drop becomes 0.8sigma to 3.1sigma, for the carbon atmospheres with constant R_Em. Thus, we do not see a statistically significant temperature drop in our data, but the involved uncertainties are too large to firmly exclude the previously reported fast cooling. Our analysis indicate a decrease of 4%-6% (1.9-2.9sigma significance) for the absorbed flux in the energy range 0.6-6keV between 2006 and 2012, most prominent in the 1.4-1.8 keV energy range. It could be caused by unaccounted changes of the detector response or contributions from unresolved SNR material along the line of sight to the CCO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا