Dark Matter Particle in QCD


Abstract in English

We report on the possibility that the Dark Matter particle is a stable, neutral, as-yet-undiscovered hadron in the standard model. The existence of a compact color-flavor-spin singlet sexaquark (S, uuddss) with mass ~2m_p, is compatible with current knowledge. The S interacts with baryons primarily via a Yukawa interaction of coupling strength alpha_SN, mediated by omega and phi vector mesons having mass ~1 GeV. If it exists, the S is a very attractive DM candidate. The relic abundance of S Dark Matter (SDM) is established when the Universe transitions from the quark-gluon plasma to the hadronic phase at ~150 MeV and is in remarkable agreement with the observed Omega_DM/Omega_b = 5.3+-0.1; this is a no-free-parameters result because the relevant parameters are known from QCD. Survival of this relic abundance to low temperature requires the breakup amplitude gtilde <~ 2 10^-6, comfortably compatible with theory expectations and observational bounds because the breakup amplitude is dynamically suppressed and many orders of magnitude smaller, as we show. The scattering cross section can differ by orders of magnitude from Born approximation, depending on alpha_SN, requiring reanalysis of observational limits. We use direct detection experiments and cosmological constraints to determine the allowed region of alpha_SN. For a range of allowed values, we predict exotic nuclear isotopes at a detectable level with mass offset ~2 amu. The most promising approaches for detecting the sexaquark in accelerator experiments are to search for a long-interaction-length neutral particle component in the central region of relativistic heavy ion collisions or using a beam-dump setup, and to search for evidence of missing particle production characterized by unbalanced baryon number and strangeness using Belle-II or possibly GLUEX at J-Lab.

Download