Do you want to publish a course? Click here

The Wide-Binary Origin of The Pluto-Charon System

133   0   0.0 ( 0 )
 Added by Mor Rozner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Pluto-Charon binary system is the best-studied representative of the binary Kuiper-belt population. Its origins are vital to understanding the formation of other Kupier-belt objects (KBO) and binaries, and the evolution of the outer solar-system. The Pluto-Charon system is believed to form following a giant impact between two massive KBOs at relatively low velocities. However, the likelihood of a random direct collision between two of the most massive KBOs is low, and is further constrained by the requirement of a low-velocity collision, making this a potentially fine-tuned scenario. Here we expand our previous studies and suggest that the proto-Pluto-Charon system was formed as a highly inclined wide-binary, which was then driven through secular/quasi-secular evolution into a direct impact. Since wide-binaries are ubiquitous in the Kuiper-belt with many expected to be highly inclined, our scenario is expected to be robust. We use analytic tools and few-body simulations of the triple Sun-(proto-)Pluto-Charon system to show that a large parameter-space of initial conditions leads to such collisions. The velocity of such an impact is the escape velocity of a bound system, which naturally explains the low-velocity impact. The dynamical evolution and the origins of the Pluto-Charon system could therefore be traced to similar secular origins as those of other binaries and contact-binaries (e.g. Arrokoth), and suggest they play a key role in the evolution of KBOs.



rate research

Read More

We consider the formation of satellites around the Pluto-Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of most circular orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto-Charon binary. With simple models and numerical experiments, we show how the Pluto-Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.
The goal of this chapter is to review hypotheses for the origin of the Pluto system in light of observational constraints that have been considerably refined over the 85-year interval between the discovery of Pluto and its exploration by spacecraft. We focus on the giant impact hypothesis currently understood as the likeliest origin for the Pluto-Charon binary, and devote particular attention to new models of planet formation and migration in the outer solar system. We discuss the origins conundrum posed by the systems four small moons. We also elaborate on the implications of these scenarios for the dynamical environment of the early transneptunian disk, the likelihood of finding a Pluto collisional family, and the origin of other binary systems in the Kuiper belt. Finally, we highlight outstanding open issues regarding the origins of the Pluto system and suggest areas of future progress.
In this letter we explore the environment of Pluto and Charon in the far infrared with the main aim to identify the signs of any possible dust ring, should it exist in the system. Our study is based on observations performed at 70 um with the PACS instrument onboard the Herschel Space Observatory at 9 epochs between March 14 and 19, 2012. The far-infrared images of the Pluto-Charon system are compared to those of the point spread function (PSF) reference quasar 3C454.3. The deviation between the observed Pluto-Charon and reference PSFs are less then 1 sigma indicating that clear evidence for an extended dust ring around the system was not found. Our method is capable of detecting a hypothetical ring with a total flux of ~3.3 mJy at a distance of ~153 000 km (~8.2 Pluto-Charon distances) from the system barycentre. We place upper limits on the total disk mass and on the column density in a reasonable disk configuration and analyse the hazard during the flyby of NASAs New Horizons in July 2015. This realistic model configuration predicts a column density of 8.7x10^(-10) gcm^(-2) along the path of the probe and an impactor mass of 8.7x10^(-5) g.
The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile ices CH$_4$, CO, and N$_2$, that dominate Plutos surface, have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological timescales. Plutos H$_2$O ice bedrock is also mapped, with isolated outcrops occurring in a variety of settings. Plutos surface exhibits complex regional color diversity associated with its distinct provinces. Charons color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon near infrared spectra reveal highly localized areas with strong NH$_3$ absorption tied to small craters with relatively fresh-appearing impact ejecta.
New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver et al. 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styxs obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا