No Arabic abstract
The integration of quantum communication functions often requires dedicated opto-electronic components that do not bode well with the technology roadmaps of telecom systems. We investigate the capability of commercial coherent transceiver sub-systems to support quantum random number generation next to classical data transmission, and demonstrate how the quantum entropy source based on vacuum fluctuations can be potentially converted into a true random number generator for this purpose. We discuss two possible implementations, building on a receiver- and a transmitter-centric architecture. In the first scheme, balanced homodyne broadband detection in a coherent intradyne receiver is exploited to measure the vacuum state at the input of a 90-degree hybrid. In our proof-of-principle demonstration, a clearance of >2 dB between optical and electrical noise is obtained over a wide bandwidth of more than 11 GHz. In the second scheme, we propose and evaluate the re-use of monitoring photodiodes of a polarization-multiplexed inphase/quadrature modulator for the same purpose. Time-interleaved random number generation is demonstrated for 10 Gbaud polarization-multiplexed quadrature phase shift keyed data transmission. The availability of detailed models will allow to calculate the extractable entropy and we accordingly show randomness extraction for our two proof-of-principle experiments, employing a two-universal strong extractor.
Recent advances in predictive data analytics and ever growing digitalization and connectivity with explosive expansions in industrial and consumer Internet-of-Things (IoT) has raised significant concerns about security of peoples identities and data. It has created close to ideal environment for adversaries in terms of the amount of data that could be used for modeling and also greater accessibility for side-channel analysis of security primitives and random number generators. Random number generators (RNGs) are at the core of most security applications. Therefore, a secure and trustworthy source of randomness is required to be found. Here, we present a differential circuit for harvesting one of the most stochastic phenomenon in solid-state physics, random telegraphic noise (RTN), that is designed to demonstrate significantly lower sensitivities to other sources of noises, radiation and temperature fluctuations. We use RTN in amorphous SrTiO3-based resistive memories to evaluate the proposed true random number generator (TRNG). Successful evaluation on conventional true randomness tests (NIST tests) has been shown. Robustness against using predictive machine learning and side-channel attacks have also been demonstrated in comparison with non-differential readouts methods.
We demonstrate a quantum random number generator based on the random nature of the phase difference between two independent laser sources. The speed of random bit generation is determined by the photodetector bandwidth and the linewidth of the lasers used. The system implemented is robust and generates a probability distribution of quantum origin which is intrinsically uniform and thus in principle needs no randomness extraction. The phase is measured with telecom equipment routinely used for high capacity coherent optical communications, which allows to keep track of the phase drift of the lasers and is readily available in the telecommunication industry.
Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.
We describe the generation of sequences of random bits from the parity of photon counts produced by polarization measurements on a polarization-entangled state. The resulting sequences are bias free, pass the applicable tests in the NIST battery of statistical randomness tests, and are shown to be Borel normal, without the need for experimental calibration stages or postprocessing of the output. Because the photon counts are produced in the course of a measurement of the violation of the Clauser-Horne-Shimony-Holt inequality, we are able to concurrently verify the nonclassical nature of the photon statistics and estimate a lower bound on the min-entropy of the bit-generating source. The rate of bit production in our experiment is around 13 bits/s.
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random number generators. These exhibit often a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be post-processed to iron out such spurious effects. Here, we present a purely optical randomness generator, based on the bi-stable output of an optical parametric oscillator. Detector noise plays no role and no further post-processing is required. Upon entering the bi-stable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.