Do you want to publish a course? Click here

Tunable spin textures in polar antiferromagnetic hybrid organic inorganic perovskites by electric and magnetic fields

115   0   0.0 ( 0 )
 Added by Feng Lou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The hybrid organic inorganic perovskites (HOIPs) have attracted much attention for their potential applications as novel optoelectronic devices. Remarkably, the Rashba band splitting, together with specific spin orientations in k space (i.e., spin texture), has been found to be relevant for the optoelectronic performances. In this work, by using first principles calculations and symmetry analyses, we study the electric polarization, magnetism, and spin texture properties of the antiferromagnetic (AFM) HOIP ferroelectric TMCM_MnCl3 (TMCM = (CH3)3NCH2Cl, trimethylchloromethyl ammonium). This recently synthesized compound is a prototype of order disorder and displacement-type ferroelectric with a large piezoelectric response, high ferroelectric transition temperature, and excellent photoluminescence properties [You et al., Science 357, 306 (2017)]. The most interesting result is that the inversion symmetry breaking coupled to the spin orbit coupling gives rise to a Rashba-like band splitting and a related robust persistent spin texture (PST) and/or typical spiral spin texture, which can be manipulated by tuning the ferroelectric or, surprisingly, also by the AFM magnetic order parameter. The tunability of spin texture upon switching of AFM order parameter is largely unexplored and our findings not only provide a platform to understand the physics of AFM spin texture but also support the AFM HOIP ferroelectrics as a promising class of optoelectronic materials.



rate research

Read More

For a class of 2D hybrid organic-inorganic perovskite semiconductors based on $pi$-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrier states in a quantum-well-like fashion. Our first-principles predictions, based on large-scale hybrid density-functional theory with spin-orbit coupling, show that the interface between the organic and inorganic parts within a single hybrid can be modulated systematically, enabling us to select between different type-I and type-II energy level alignments. Energy levels, recombination properties and transport behavior of electrons and holes thus become tunable by choosing specific organic functionalizations and juxtaposing them with suitable inorganic components.
Behaving like atomically-precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered HOIPs have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These strong interactions suggest the possibility of larger excitonic complexes like trions and biexcitons, which are hard to study numerically due to the complexity of the layered HOIPs. Here, we propose and parameterize a model Hamiltonian for excitonic complexes in layered HOIPs and we study the correlated eigenfunctions of trions and biexcitons using a combination of diffusion Monte Carlo and very large variational calculations with explicitly correlated Gaussian basis functions. Binding energies and spatial structures of these complexes are presented as a function of the layer thickness. The trion and biexciton of the thinnest layered HOIP have binding energies of 35 meV and 44 meV, respectively, whereas a single exfoliated layer is predicted to have trions and biexcitons with equal binding enegies of 48 meV. We compare our findings to available experimental data and to that of other quasi-two-dimensional materials.
Hybrid organic-inorganic perovskites (HOIPs) have emerged to the forefront of optoelectronic materials advancement in the past few years. Due to the nature of organic compounds within the perovskite structure, its optoelectronic properties are affected by complex interaction and correlation effects between the organic and inorganic ions. Using spectroscopic ellipsometry, we observe two broad plasmonic excitation from the calculated loss function (LF) -Im[varepislon^{-1} (omega)], peak A and B at 3.28 eV and 4.26 eV, respectively.The presence of these two asymmetric peaks in the spectroscopic ellipsometry (SE) spectra indicates the existence of unconventional plasmons at room temperature. This is inferred due to the absence of the zero-crossing in the real part of dielectric function varepsilon_1 (omega). Through combined Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Resonant Photoemission Spectroscopies (ResPES), we observe resonance enhancement peak close to 15 eV in the C K-edge region that unravels a charge transfer event due to the opening of an extra autoionization channel. Additionally, photoluminescence (PL) spectrum confirms the presence of broadband emission originating from the self-trapped emission excitons at 2.38 eV due to the soft 2D-HOIPs crystal structure. We believe that these phenomena directly impact the correlation strength in 2D-HOIPs. Our results have confirmed the existence of unconventional plasmons of 2D-HOIPs at room temperature. Such studies in the emission and plasmonic behavior of perovskites will pave the way for the efficient light emitting devices or lasers with minimal integrations of the materials.
Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementary measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the origin of the low thermal conductivity. We apply neutron spectroscopy to show that the same acoustic phonon energy linewidth broadening (corresponding to shortened lifetimes) occurs in the fully inorganic CsPbBr$_{3}$ by comparing the results on the organic-inorganic CH$_{3}$NH$_{3}$PbCl$_{3}$. We investigate the critical dynamics near the three zone boundaries of the cubic $Pmoverline{3}m$ Brillouin zone of CsPbBr$_{3}$ and find energy and momentum broadened dynamics at momentum points where the Cs-site ($A$-site) motions contribute to the cross section. Neutron diffraction is used to confirm that both the Cs and Br sites have unusually large thermal displacements with an anisotropy that mirrors the low temperature structural distortions. The presence of an organic molecule is not necessary to disrupt the low-energy acoustic phonons at momentum transfers located away from the zone center in the lead halide perovskites and such damping may be driven by the large displacements or possibly disorder on the $A$ site.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا