Do you want to publish a course? Click here

Fermi blockade of the electron-phonon interaction: why strong coupling effects may not be seen in optimally doped high temperature superconductors

65   0   0.0 ( 0 )
 Added by Andrey Mishchenko
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how manifestations of strong electron-phonon interaction (EPI) depend on the carrier concentration by solving the two-dimensional Holstein model for the spin-polarized fermions using an approximation free bold-line diagrammatic Monte Carlo (BDMC) method. We show that the strong EPI, obviously present at very small Fermion concentration, is masked by the Fermi blockade effects and Migdals theorem to the extent that it manifests itself as moderate one at large carriers densities. Suppression of strong EPI fingerprints is in agreement with experimental observations in doped high temperature superconductors



rate research

Read More

Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high transition temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of an electron with a phonon would result in an abrupt change of its velocity and scattering rate near the phonon energy. Here we use angle resolved photoemission spectroscopy to probe electron dynamics -velocity and scattering rate- for three different families of copper oxide superconductors. We see in all of these materials an abrupt change of electron velocity at 50-80meV, which we cannot explain by any known process other than to invoke coupling with the phonons associated with the movement of the oxygen atoms. This suggests that electron-phonon coupling strongly influences the electron dynamics in the high-temperature superconductors, and must therefore be included in any microscopic theory of superconductivity.
105 - Y. Murakami , P. Werner , N. Tsuji 2016
We study the effect of strong electron-phonon interactions on the damping of the Higgs amplitude mode in superconductors by means of non-equilibrium dynamical mean-field simulations of the Holstein model. In contrast to the BCS dynamics, we find that the damping of the Higgs mode strongly depends on the temperature, becoming faster as the systen approaches the transition temperature. The damping at low temperatures is well described by a power-law, while near the transition temperature the damping shows exponential-like behavior. We explain this crossover by a temperature-dependent quasiparticle lifetime caused by the strong electron- phonon coupling, which smears the superconducting gap edge and makes the relaxation of the Higgs mode into quasiparticles more efficient at elevated temperatures. We also reveal that the phonon dynamics can soften the Higgs mode, which results in a slower damping.
We report on Raman scattering experiments of the undoped SrFe2As2 and superconducting Sr0.85K0.15Fe2As2 (Tc=28K) and Ba0.72K0.28Fe2As2 (Tc=32K) single crystals. The frequency and linewidth of the B1g mode at 210 cm-1 exhibits an appreciable temperature dependence induced by the superconducting and spin density wave transitions. We give estimates of the electron-phonon coupling related to this renormalization. In addition, we observe a pronounced quasi-elastic Raman response for the undoped compound, suggesting persisting magnetic fluctuations to low temperatures. In the superconducting state the renormalization of an electronic continuum is observed with a threshold energy of 61cm-1.
The t-t-t-J model of electrons interacting with three phonon modes (breathing, apical breathing, and buckling) is considered. The wave-vector dependence of the matrix elements of the electron-phonon interaction leads to opposite contributions to the pairing potential with the d-symmetry: the buckling mode facilitates electron pairing, while the breathing mode suppresses it. As a result, the critical temperature of La{2 - x}Sr{x}CuO{4} that is associated with the magnetic mechanism is lowered when phonons are taken into account.
313 - J. Graf , M. dAstuto , C. Jozwiak 2008
We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا