No Arabic abstract
Since the current evidence of its existence is revealed only through its gravitational influence, the way dark matter couples to gravity must be then of primary importance. Here, unlike the standard model sector which is typically coupled to metric, dark matter is supposed to couple only to spacetime affine connection through a $Z_2$-symmetry breaking term. We show that this structure leads to a coupling between dark matter, which is considered scalar, and the standard model Higgs potential. This induces dark matter decays into standard model particles through the Higgs which acts as a portal between the visible and the dark sectors. We study thoroughly the resulting decay modes for various mass ranges, and provide relevant bounds on the nonminimal coupling to affine gravity in line with observational data. Moreover, we find that the coupling to Higgs can be sufficiently large to facilitate production of dark matter lighter than 10 GeV at current and future high energy colliders.
We propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analogue of the Coleman-Weinberg mechanism, in addition to the Standard Model with heavy Majorana right-handed neutrinos. By assuming a $Z_2 $ symmetry, one of the scalars becomes a DM candidate whose property is almost the same as the minimal Higgs-portal scalar DM. In this model, the MPP can naturally realize a saddle point in the Higgs potential at high energy scales. By the renormalization-group analysis, we study the critical Higgs inflation with non-minimal coupling $xi |H|^2 R$ that utilizes the saddle point of the Higgs potential. We find that it is possible to realize successful inflation even for $xi=25$ and that the heaviest right-handed neutrino is predicted to have a mass around $10^{14}$ GeV to meet the current cosmological observations. Such a small value of $xi$ can be realized by the Higgs-portal coupling $lambda_{SH}simeq 0.32$ and the vacuum expectation value of the additional neutral scalar $langlephiranglesimeq 2.7$ TeV, which correspond to the dark matter mass 2.0 TeV, its spin-independent cross section $1.8times10^{-9}$ pb, and the mass of additional neutral scalar 190 GeV.
The axion-gravity Chern-Simons coupling is well motivated but is relatively weakly constrained, partly due to difficult measurements of gravity. We study the sensitivity of LIGO measurements of chirping gravitational waves (GWs) on such coupling. When the frequency of the propagating GW matches with that of the coherent oscillation of axion dark matter field, the decay of axions into gravitons can be stimulated, resonantly enhancing the GW. Such a resonance peak can be detected at LIGO as a deviation from the chirping waveform. Since all observed GWs will undergo similar resonant enhancement from the Milky-Way (MW) axion halo, LIGO O1+O2 observations can potentially provide the strongest constraint on the coupling, at least for the axion mass $m_a = 5 times 10^{-13} - 5 times 10^{-12}$ eV. Along the course, we also emphasize the relevance of the finite coherence of axion fields and the ansatz separating forward and backward propagations of GWs. As a result, the parity violation of the Chern-Simons coupling is not observable from chirping GWs.
We study the decay of gravitational waves into dark energy fluctuations $pi$, through the processes $gamma to pipi$ and $gamma to gamma pi$, made possible by the spontaneous breaking of Lorentz invariance. Within the EFT of Dark Energy (or Horndeski/beyond Horndeski theories) the first process is large for the operator $frac12 tilde m_4^2(t) , delta g^{00}, left( {}^{(3)}! R + delta K_mu^ u delta K^mu_ u -delta K^2 right)$, so that the recent observations force $tilde m_4 =0$ (or equivalently $alpha_{rm H}=0$). This constraint, together with the requirement that gravitational waves travel at the speed of light, rules out all quartic and quintic GLPV theories. Additionally, we study how the same couplings affect the propagation of gravitons at loop order. The operator proportional to $tilde m_4^2$ generates a calculable, non-Lorentz invariant higher-derivative correction to the graviton propagation. The modification of the dispersion relation provides a bound on $tilde m_4^2$ comparable to the one of the decay. Conversely, operators up to cubic Horndeski do not generate sizeable higher-derivative corrections.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
We study preheating in plateau inflation in the Palatini formulation of general relativity, in a special case that resembles Higgs inflation. It was previously shown that the oscillating inflaton field returns to the plateau repeatedly in this model, and this leads to tachyonic production of inflaton particles. We show that a minimally coupled spectator scalar field can be produced even more efficiently by a similar mechanism. The mechanism is purely gravitational, and the scalar field mass can be of order $10^{13}$ GeV, larger than the Hubble scale by many orders of magnitude, making this a candidate for superheavy dark matter.