Do you want to publish a course? Click here

Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start

80   0   0.0 ( 0 )
 Added by Weiwen Jiang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search frameworks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a cold state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a hot state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.



rate research

Read More

In the recent past, the success of Neural Architecture Search (NAS) has enabled researchers to broadly explore the design space using learning-based methods. Apart from finding better neural network architectures, the idea of automation has also inspired to improve their implementations on hardware. While some practices of hardware machine-learning automation have achieved remarkable performance, the traditional design concept is still followed: a network architecture is first structured with excellent test accuracy, and then compressed and optimized to fit into a target platform. Such a design flow will easily lead to inferior local-optimal solutions. To address this problem, we propose a new framework to jointly explore the space of neural architecture, hardware implementation, and quantization. Our objective is to find a quantized architecture with the highest accuracy that is implementable on given hardware specifications. We employ FPGAs to implement and test our designs with limited loop-up tables (LUTs) and required throughput. Compared to the separate design/searching methods, our framework has demonstrated much better performance under strict specifications and generated designs of higher accuracy by 18% to 68% in the task of classifying CIFAR10 images. With 30,000 LUTs, a light-weight design is found to achieve 82.98% accuracy and 1293 images/second throughput, compared to which, under the same constraints, the traditional method even fails to find a valid solution.
132 - Massimo Franceschet 2010
PageRank is a Web page ranking technique that has been a fundamental ingredient in the development and success of the Google search engine. The method is still one of the many signals that Google uses to determine which pages are most important. The main idea behind PageRank is to determine the importance of a Web page in terms of the importance assigned to the pages hyperlinking to it. In fact, this thesis is not new, and has been previously successfully exploited in different contexts. We review the PageRank method and link it to some renowned previous techniques that we have found in the fields of Web information retrieval, bibliometrics, sociometry, and econometrics.
We propose a novel hardware and software co-exploration framework for efficient neural architecture search (NAS). Different from existing hardware-aware NAS which assumes a fixed hardware design and explores the neural architecture search space only, our framework simultaneously explores both the architecture search space and the hardware design space to identify the best neural architecture and hardware pairs that maximize both test accuracy and hardware efficiency. Such a practice greatly opens up the design freedom and pushes forward the Pareto frontier between hardware efficiency and test accuracy for better design tradeoffs. The framework iteratively performs a two-level (fast and slow) exploration. Without lengthy training, the fast exploration can effectively fine-tune hyperparameters and prune inferior architectures in terms of hardware specifications, which significantly accelerates the NAS process. Then, the slow exploration trains candidates on a validation set and updates a controller using the reinforcement learning to maximize the expected accuracy together with the hardware efficiency. Experiments on ImageNet show that our co-exploration NAS can find the neural architectures and associated hardware design with the same accuracy, 35.24% higher throughput, 54.05% higher energy efficiency and 136x reduced search time, compared with the state-of-the-art hardware-aware NAS.
In this paper, we present a novel multi-objective hardware-aware neural architecture search (NAS) framework, namely HSCoNAS, to automate the design of deep neural networks (DNNs) with high accuracy but low latency upon target hardware. To accomplish this goal, we first propose an effective hardware performance modeling method to approximate the runtime latency of DNNs on target hardware, which will be integrated into HSCoNAS to avoid the tedious on-device measurements. Besides, we propose two novel techniques, i.e., dynamic channel scaling to maximize the accuracy under the specified latency and progressive space shrinking to refine the search space towards target hardware as well as alleviate the search overheads. These two techniques jointly work to allow HSCoNAS to perform fine-grained and efficient explorations. Finally, an evolutionary algorithm (EA) is incorporated to conduct the architecture search. Extensive experiments on ImageNet are conducted upon diverse target hardware, i.e., GPU, CPU, and edge device to demonstrate the superiority of HSCoNAS over recent state-of-the-art approaches.
Entity linking is a standard component in modern retrieval system that is often performed by third-party toolkits. Despite the plethora of open source options, it is difficult to find a single system that has a modular architecture where certain components may be replaced, does not depend on external sources, can easily be updated to newer Wikiped

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا