Do you want to publish a course? Click here

The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale Structure Catalogues and Measurement of the isotropic BAO between redshift 0.6 and 1.1 for the Emission Line Galaxy Sample

137   0   0.0 ( 0 )
 Added by Anand Raichoor
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Emission Line Galaxy (ELG) sample of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) from the Sloan Digital Sky Survey IV Data Release 16 (DR16). After describing the observations and redshift measurement for the 269,243 observed ELG spectra over 1170 deg$^2$, we present the large-scale structure catalogues, which are used for the cosmological analysis. These catalogues contain 173,736 reliable spectroscopic redshifts between 0.6 and 1.1, along with the associated random catalogues quantifying the extent of observations, and the appropriate weights to correct for non-cosmological fluctuations. We perform a spherically averaged baryon acoustic oscillations (BAO) measurement in configuration space, with density field reconstruction: the data 2-point correlation function shows a feature consistent with that of the BAO, providing a 3.2-percent measurement of the spherically averaged BAO distance $D_V(z_{rm eff})/r_{rm drag} = 18.23pm 0.58$ at the effective redshift $z_{rm eff}=0.845$.



rate research

Read More

We analyse the large-scale clustering in Fourier space of emission line galaxies (ELG) from the Data Release 16 of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. The ELG sample contains 173,736 galaxies covering 1,170 square degrees in the redshift range $0.6 < z < 1.1$. We perform a BAO measurement from the post-reconstruction power spectrum monopole, and study redshift space distortions (RSD) in the first three even multipoles. Photometric variations yield fluctuations of both the angular and radial survey selection functions. Those are directly inferred from data, imposing integral constraints which we model consistently. The full data set has only a weak preference for a BAO feature ($1.4sigma$). At the effective redshift $z_{rm eff} = 0.845$ we measure $D_{rm V}(z_{rm eff})/r_{rm drag} = 18.33_{-0.62}^{+0.57}$, with $D_{rm V}$ the volume-averaged distance and $r_{rm drag}$ the comoving sound horizon at the drag epoch. In combination with the RSD measurement, at $z_{rm eff} = 0.85$ we find $fsigma_8(z_{rm eff}) = 0.289_{-0.096}^{+0.085}$, with $f$ the growth rate of structure and $sigma_8$ the normalisation of the linear power spectrum, $D_{rm H}(z_{rm eff})/r_{rm drag} = 20.0_{-2.2}^{+2.4}$ and $D_{rm M}(z_{rm eff})/r_{rm drag} = 19.17 pm 0.99$ with $D_{rm H}$ and $D_{rm M}$ the Hubble and comoving angular distances, respectively. These results are in agreement with those obtained in configuration space, thus allowing a consensus measurement of $fsigma_8(z_{rm eff}) = 0.315 pm 0.095$, $D_{rm H}(z_{rm eff})/r_{rm drag} = 19.6_{-2.1}^{+2.2}$ and $D_{rm M}(z_{rm eff})/r_{rm drag} = 19.5 pm 1.0$. This measurement is consistent with a flat $Lambda$CDM model with Planck parameters.
We present the anisotropic clustering of emission line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173,736 ELGs covering an area of 1170 deg$^2$ over the redshift range $0.6 leq z leq 1.1$. We use the Convolution Lagrangian Perturbation Theory in addition to the Gaussian Streaming Redshift-Space Distortions to model the Legendre multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation function estimator that cancels out the angular modes from the clustering. At the effective redshift, $z_{rm eff}=0.85$, including statistical and systematical uncertainties, we measure the linear growth rate of structure $fsigma_8(z_{rm eff}) = 0.35pm0.10$, the Hubble distance $D_H(z_{rm eff})/r_{rm drag} = 19.1^{+1.9}_{-2.1}$ and the comoving angular diameter distance $D_M(z_{rm eff})/r_{rm drag} = 19.9pm1.0$. These results are in agreement with the Fourier space analysis, leading to consensus values of: $fsigma_8(z_{rm eff}) = 0.315pm0.095$, $D_H(z_{rm eff})/r_{rm drag} = 19.6^{+2.2}_{-2.1}$ and $D_M(z_{rm eff})/r_{rm drag} = 19.5pm1.0$, consistent with $Lambda$CDM model predictions with Planck parameters.
We present 2000 mock galaxy catalogs for the analysis of baryon acoustic oscillations in the Emission Line Galaxy (ELG) sample of the Extended Baryon Oscillation Spectroscopic Survey Data Release 16 (eBOSS DR16). Each mock catalog has a number density of $6.7 times 10^{-4} h^3 rm Mpc^{-3}$, covering a redshift range from 0.6 to 1.1. The mocks are calibrated to small-scale eBOSS ELG clustering measurements at scales of around 10 $h^{-1}$Mpc. The mock catalogs are generated using a combination of GaLAxy Mocks (GLAM) simulations and the Quick Particle-Mesh (QPM) method. GLAM simulations are used to generate the density field, which is then assigned dark matter halos using the QPM method. Halos are populated with galaxies using a halo occupation distribution (HOD). The resulting mocks match the survey geometry and selection function of the data, and have slightly higher number density which allows room for systematic analysis. The large-scale clustering of mocks at the baryon acoustic oscillation (BAO) scale is consistent with data and we present the correlation matrix of the mocks.
We present large-scale structure catalogs from the completed extended Baryon Oscillation Spectroscopic Survey (eBOSS). Derived from Sloan Digital Sky Survey (SDSS) -IV Data Release 16 (DR16), these catalogs provide the data samples, corrected for observational systematics, and random positions sampling the survey selection function. Combined, they allow large-scale clustering measurements suitable for testing cosmological models. We describe the methods used to create these catalogs for the eBOSS DR16 Luminous Red Galaxy (LRG) and Quasar samples. The quasar catalog contains 343,708 redshifts with $0.8 < z < 2.2$ over 4,808,deg$^2$. We combine 174,816 eBOSS LRG redshifts over 4,242,deg$^2$ in the redshift interval $0.6 < z < 1.0$ with SDSS-III BOSS LRGs in the same redshift range to produce a combined sample of 377,458 galaxy redshifts distributed over 9,493,deg$^2$. Improved algorithms for estimating redshifts allow that 98 per cent of LRG observations result in a successful redshift, with less than one per cent catastrophic failures ($Delta z > 1000$ ${rm km~s}^{-1}$). For quasars, these rates are 95 and 2 per cent (with $Delta z > 3000$ ${rm km~s}^{-1}$). We apply corrections for trends between the number densities of our samples and the properties of the imaging and spectroscopic data. For example, the quasar catalog obtains a $chi^2$/DoF$= 776/10$ for a null test against imaging depth before corrections and a $chi^2$/DoF$=6/8$ after. The catalogs, combined with careful consideration of the details of their construction found here-in, allow companion papers to present cosmological results with negligible impact from observational systematic uncertainties.
Cosmological growth can be measured in the redshift space clustering of galaxies targeted by spectroscopic surveys. Accurate prediction of clustering of galaxies will require understanding galaxy physics which is a very hard and highly non-linear problem. Approximate models of redshift space distortion (RSD) take a perturbative approach to solve the evolution of dark matter and galaxies in the universe. In this paper we focus on eBOSS emission line galaxies (ELGs) which live in intermediate mass haloes. We create a series of mock catalogues using haloes from the Multidark and {sc Outer Rim} dark matter only N-body simulations. Our mock catalogues include various effects inspired by baryonic physics such as assembly bias and the characteristics of satellite galaxies kinematics, dynamics and statistics deviating from dark matter particles. We analyse these mocks using the TNS RSD model in Fourier space and the CLPT in configuration space. We conclude that these two RSD models provide an unbiased measurement of redshift space distortion within the statistical error of our mocks. We obtain the conservative theoretical systematic uncertainty of $3.3%$, $1.8%$ and $1.5%$ in $fsigma_8$, $alpha_{parallel}$ and $alpha_{bot}$ respectively for the TNS and CLPT models. We note that the estimated theoretical systematic error is an order of magnitude smaller than the statistical error of the eBOSS ELG sample and hence are negligible for the purpose of the current eBOSS ELG analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا