Do you want to publish a course? Click here

The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: N-body Mock Challenge for the Quasar Sample

127   0   0.0 ( 0 )
 Added by Alexander Smith
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The growth rate and expansion history of the Universe can be measured from large galaxy redshift surveys using the Alcock-Paczynski effect. We validate the Redshift Space Distortion models used in the final analysis of the Sloan Digital Sky Survey (SDSS) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 quasar clustering sample, in configuration and Fourier space, using a series of HOD mock catalogues generated using the OuterRim N-body simulation. We test three models on a series of non-blind mocks, in the OuterRim cosmology, and blind mocks, which have been rescaled to new cosmologies, and investigate the effects of redshift smearing and catastrophic redshifts. We find that for the non-blind mocks, the models are able to recover $fsigma_8$ to within 3% and $alpha_parallel$ and $alpha_bot$ to within 1%. The scatter in the measurements is larger for the blind mocks, due to the assumption of an incorrect fiducial cosmology. From this mock challenge, we find that all three models perform well, with similar systematic errors on $fsigma_8$, $alpha_parallel$ and $alpha_bot$ at the level of $sigma_{fsigma_8}=0.013$, $sigma_{alpha_parallel}=0.012$ and $sigma_{alpha_bot}=0.008$. The systematic error on the combined consensus is $sigma_{fsigma_8}=0.011$, $sigma_{alpha_parallel}=0.008$ and $sigma_{alpha_bot}=0.005$, which is used in the final DR16 analysis. For BAO fits in configuration and Fourier space, we take conservative systematic errors of $sigma_{alpha_parallel}=0.010$ and $sigma_{alpha_bot}=0.007$.



rate research

Read More

We develop a series of N-body data challenges, functional to the final analysis of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16) galaxy sample. The challenges are primarily based on high-fidelity catalogs constructed from the Outer Rim simulation - a large box size realization (3 Gpc/h) characterized by an unprecedented combination of volume and mass resolution, down to 1.85x10^9 M_sun/h. We generate synthetic galaxy mocks by populating Outer Rim halos with a variety of halo occupation distribution (HOD) schemes of increasing complexity, spanning different redshift intervals. We then assess the performance of three complementary redshift space distortion (RSD) models in configuration and Fourier space, adopted for the analysis of the complete DR16 eBOSS sample of Luminous Red Galaxies (LRGs). We find all the methods mutually consistent, with comparable systematic errors on the Alcock-Paczynski parameters and the growth of structure, and robust to different HOD prescriptions - thus validating the robustness of the models and the pipelines used for the baryon acoustic oscillation (BAO) and full shape clustering analysis. In particular, all the techniques are able to recover a_par and a_perp to within 0.9%, and fsig8 to within 1.5%. As a by-product of our work, we are also able to gain interesting insights on the galaxy-halo connection. Our study is relevant for the final eBOSS DR16 `consensus cosmology, as the systematic error budget is informed by testing the results of analyses against these high-resolution mocks. In addition, it is also useful for future large-volume surveys, since similar mock-making techniques and systematic corrections can be readily extended to model for instance the Dark Energy Spectroscopic Instrument (DESI) galaxy sample.
Cosmological growth can be measured in the redshift space clustering of galaxies targeted by spectroscopic surveys. Accurate prediction of clustering of galaxies will require understanding galaxy physics which is a very hard and highly non-linear problem. Approximate models of redshift space distortion (RSD) take a perturbative approach to solve the evolution of dark matter and galaxies in the universe. In this paper we focus on eBOSS emission line galaxies (ELGs) which live in intermediate mass haloes. We create a series of mock catalogues using haloes from the Multidark and {sc Outer Rim} dark matter only N-body simulations. Our mock catalogues include various effects inspired by baryonic physics such as assembly bias and the characteristics of satellite galaxies kinematics, dynamics and statistics deviating from dark matter particles. We analyse these mocks using the TNS RSD model in Fourier space and the CLPT in configuration space. We conclude that these two RSD models provide an unbiased measurement of redshift space distortion within the statistical error of our mocks. We obtain the conservative theoretical systematic uncertainty of $3.3%$, $1.8%$ and $1.5%$ in $fsigma_8$, $alpha_{parallel}$ and $alpha_{bot}$ respectively for the TNS and CLPT models. We note that the estimated theoretical systematic error is an order of magnitude smaller than the statistical error of the eBOSS ELG sample and hence are negligible for the purpose of the current eBOSS ELG analysis.
We present 2000 mock galaxy catalogs for the analysis of baryon acoustic oscillations in the Emission Line Galaxy (ELG) sample of the Extended Baryon Oscillation Spectroscopic Survey Data Release 16 (eBOSS DR16). Each mock catalog has a number density of $6.7 times 10^{-4} h^3 rm Mpc^{-3}$, covering a redshift range from 0.6 to 1.1. The mocks are calibrated to small-scale eBOSS ELG clustering measurements at scales of around 10 $h^{-1}$Mpc. The mock catalogs are generated using a combination of GaLAxy Mocks (GLAM) simulations and the Quick Particle-Mesh (QPM) method. GLAM simulations are used to generate the density field, which is then assigned dark matter halos using the QPM method. Halos are populated with galaxies using a halo occupation distribution (HOD). The resulting mocks match the survey geometry and selection function of the data, and have slightly higher number density which allows room for systematic analysis. The large-scale clustering of mocks at the baryon acoustic oscillation (BAO) scale is consistent with data and we present the correlation matrix of the mocks.
96 - Adam D. Myers 2015
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 sq. deg. First, a CORE quasar sample will combine optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color-cut. eBOSS CORE selection (to g < 22 OR r < 22) should return ~ 70 quasars per sq. deg. at redshifts 0.9 < z < 2.2 and ~7 z > 2.1 quasars per sq. deg. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 z > 2.1 quasars per sq. deg. to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS North (South) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near z~1.5. eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyman-alpha Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra of over 800,000 quasars.
We present a measurement of baryonic acoustic oscillations (BAO) from Lyman-$alpha$ (Ly$alpha$) absorption and quasars at an effective redshift $z=2.33$ using the complete extended Baryonic Oscillation Spectroscopic Survey (eBOSS). The sixteenth and final eBOSS data release (SDSS DR16) contains all data from eBOSS and its predecessor, the Baryonic Oscillation Spectroscopic Survey (BOSS), providing $210,005$ quasars with $z_{q}>2.10$ that are used to measure Ly$alpha$ absorption. We measure the BAO scale both in the auto-correlation of Ly$alpha$ absorption and in its cross correlation with $341,468$ quasars with redshift $z_{q}>1.77$. Apart from the statistical gain from new quasars and deeper observations, the main improvements over previous work come from more accurate modeling of physical and instrumental correlations and the use of new sets of mock data. Combining the BAO measurement from the auto- and cross-correlation yields the constraints of the two ratios $D_{H}(z=2.33)/r_{d} = 8.99 pm 0.19$ and $D_{M}(z=2.33)/r_{d} = 37.5 pm 1.1$, where the error bars are statistical. These results are within $1.5sigma$ of the prediction of the flat-$Lambda$CDM cosmology of Planck~(2016). The analysis code, texttt{picca}, the catalog of the flux-transmission field measurements, and the $Delta chi^{2}$ surfaces are publicly available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا