Do you want to publish a course? Click here

Higher key rate of measurement-device-independent quantum key distribution through joint data processing

187   0   0.0 ( 0 )
 Added by Xiang-Bin Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a method named as double-scanning method, to improve the key rate of measurement-device-independent quantum key distribution (MDI-QKD) drastically. In the method, two parameters are scanned simultaneously to tightly estimate the counts of single-photon pairs and the phase-flip error rate jointly. Numerical results show that the method in this work can improve the key rate by $35%-280%$ in a typical experimental set-up. Besides, we study the optimization of MDI-QKD protocol with all parameters including the source parameters and failure probability parameters, over symmetric channel or asymmetric channel. Compared with the optimized results with only the source parameters, the all-parameter-optimization method could improve the key rate by about $10%$.



rate research

Read More

Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side. However, the protocol still keeps the strict assumptions on the source side that the four BB84-states must be perfectly prepared to ensure security. Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performances would be dramatically reduced. In this work, we present an MDIQKD protocol that requires less knowledge for the coding system while the original good properties are still retained. We have also experimentally demonstrated the protocol. The result indicates the high-performance and good security for its practical applications. Besides, its robustness and flexibility exhibit a good value for complex scenarios such as the QKD networks.
152 - Guang Ping He 2021
Measurement-device-independent quantum key distribution (MDI-QKD) provides a method for secret communication whose security does not rely on trusted measurement devices. In all existing MDI-QKD protocols, the participant Charlie has to perform the Bell state measurement or other joint measurements. Here we propose an MDI-QKD protocol which requires individual measurements only. Meanwhile, all operations of the receiver Bob are classical, without the need for preparing and measuring quantum systems. Thus the implementation of the protocol has a lower technical requirement on Bob and Charlie.
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing. Conventional security proofs, however, require additional assumptions on sources and that can be compromised through uncharacterized side channels in practice. Here, we present a general formalism based on reference technique to prove the security of MDI-QKD against any possible sources imperfection and/or side channels. With this formalism, we investigate the asymptotic performance of single-photon sources without any extra assumptions on the state preparations. Our results highlight the importance of transmitters security.
Untrusted node networks initially implemented by measurement-device-independent quantum key distribution (MDI-QKD) protocol are a crucial step on the roadmap of the quantum Internet. Considering extensive QKD implementations of trusted node networks, a workable upgrading tactic of existing networks toward MDI networks needs to be explicit. Here, referring to the nonstandalone (NSA) network of 5G, we propose an NSA-MDI scheme as an evolutionary selection for existing phase-encoding BB84 networks. Our solution can upgrade the BB84 networks and terminals that employ various phase-encoding schemes to immediately support MDI without hardware changes. This cost-effective upgrade effectively promotes the deployment of MDI networks as a step of untrusted node networks while taking full advantage of existing networks. In addition, the diversified demands on security and bandwidth are satisfied, and network survivability is improved.
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of todays loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 1E8 to 1E10 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا