Do you want to publish a course? Click here

Edge ideals of Erd{o}s-Renyi random graphs : Linear resolution, unmixedness and regularity

73   0   0.0 ( 0 )
 Added by D. Yogeshwaran Mr
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the homological algebra of edge ideals of Erd{o}s-Renyi random graphs. These random graphs are generated by deleting edges of a complete graph on $n$ vertices independently of each other with probability $1-p$. We focus on some aspects of these random edge ideals - linear resolution, unmixedness and algebraic invariants like the Castelnuovo-Mumford regularity, projective dimension and depth. We first show a double phase transition for existence of linear presentation and resolution and determine the critical windows as well. As a consequence, we obtain that except for a very specific choice of parameters (i.e., $n,p := p(n)$), with high probability, a random edge ideal has linear presentation if and only if it has linear resolution. This shows certain conjectures hold true for large random graphs with high probability even though the conjectures were shown to fail for determinstic graphs. Next, we study asymptotic behaviour of some algebraic invariants - the Castelnuovo-Mumford regularity, projective dimension and depth - of such random edge ideals in the sparse regime (i.e., $p = frac{lambda}{n}, lambda in (0,infty)$). These invariants are studied using local weak convergence (or Benjamini-Schramm convergence) and relating them to invariants on Galton-Watson trees. We also show that when $p to 0$ or $p to 1$ fast enough, then with high probability the edge ideals are unmixed and for most other choices of $p$, these ideals are not unmixed with high probability. This is further progress towards the conjecture that random monomial ideals are unlikely to have Cohen-Macaulay property (see De Loera et al. 2019a,2019b) in the setting when the number of variables goes to infinity but the degree is fixed.



rate research

Read More

Let $D=(G,mathcal{O},w)$ be a weighted oriented graph whose edge ideal is $I(D)$. In this paper, we characterize the unmixed property of $I(D)$ for each one of the following cases: $G$ is an $SCQ$ graph; $G$ is a chordal graph; $G$ is a simplicial graph; $G$ is a perfect graph; $G$ has no $4$- or $5$-cycles; $G$ is a graph without $3$- and $5$-cycles; and ${rm girth}(G)geqslant 5$.
In this paper we prove the conjectured upper bound for Castelnuovo-Mumford regularity of binomial edge ideals posed in [23], in the case of chordal graphs. Indeed, we show that the regularity of any chordal graph G is bounded above by the number of maximal cliques of G, denoted by c(G). Moreover, we classify all chordal graphs G for which L(G) = c(G), where L(G) is the sum of the lengths of longest induced paths of connected components of G. We call such graphs strongly interval graphs. Moreover, we show that the regularity of a strongly interval graph G coincides with L(G) as well as c(G).
We graph-theoretically characterize the class of graphs $G$ such that $I(G)^2$ are Buchsbaum.
The main contribution of this article is an asymptotic expression for the rate associated with moderate deviations of subgraph counts in the ErdH{o}s-Renyi random graph $G(n,m)$. Our approach is based on applying Freedmans inequalities for the probability of deviations of martingales to a martingale representation of subgraph count deviations. In addition, we prove that subgraph count deviations of different subgraphs are all linked, via the deviations of two specific graphs, the path of length two and the triangle. We also deduce new bounds for the related $G(n,p)$ model.
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge ideal $I_G$ corresponding to the missing edges of $G$, and study Betti numbers of $R/I_G$ as $n$ tends to infinity. Our main results involve fixing the edge probability $p = p(n)$ so that asymptotically almost surely the Krull dimension of $R/I_G$ is fixed. Under these conditions we establish various properties regarding the Betti table of $R/I_G$, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex $k$-connectivity that may be of independent interest.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا