Dirac Polarons and Resistivity Anomaly in ZrTe5 and HfTe5


Abstract in English

Resistivity anomaly, a sharp peak of resistivity at finite temperatures, in the transition-metal pentatellurides ZrTe5 and HfTe5 was observed four decades ago, and more exotic and anomalous behaviors of electric and thermoelectric transport were revealed recent years. Here we present a theory of Dirac polarons, composed by massive Dirac electrons and holes in an encircling cloud of lattice displacements or phonons at finite temperatures. The chemical potential of Dirac polarons sweeps the band gap of the topological band structure by increasing the temperature, leading to the resistivity anomaly. Formation of a nearly neutral state of Dirac polarons accounts for the anomalous behaviors of the electric and thermoelectric resistivity.

Download