No Arabic abstract
We make a formal analogy between random sampling and fresh name generation. We show that quasi-Borel spaces, a model for probabilistic programming, can soundly interpret Starks $ u$-calculus, a calculus for name generation. Moreover, we prove that this semantics is fully abstract up to first-order types. This is surprising for an off-the-shelf model, and requires a novel analysis of probability distributions on function spaces. Our tools are diverse and include descriptive set theory and normal forms for the $ u$-calculus.
Synchronous modeling is at the heart of programming languages like Lustre, Esterel, or Scade used routinely for implementing safety critical control software, e.g., fly-by-wire and engine control in planes. However, to date these languages have had limited modern support for modeling uncertainty -- probabilistic aspects of softwares environment or behavior -- even though modeling uncertainty is a primary activity when designing a control system. In this paper we present ProbZelus the first synchronous probabilistic programming language. ProbZelus conservatively provides the facilities of a synchronous language to write control software, with probabilistic constructs to model uncertainties and perform inference-in-the-loop. We present the design and implementation of the language. We propose a measure-theoretic semantics of probabilistic stream functions and a simple type discipline to separate deterministic and probabilistic expressions. We demonstrate a semantics-preserving compilation into a first-order functional language that lends itself to a simple presentation of inference algorithms for streaming models. We also redesign the delayed sampling inference algorithm to provide efficient streaming inference. Together with an evaluation on several reactive applications, our results demonstrate that ProbZelus enables the design of reactive probabilistic applications and efficient, bounded memory inference.
It is well-known that big-step semantics is not able to distinguish stuck and non-terminating computations. This is a strong limitation as it makes very difficult to reason about properties involving infinite computations, such as type soundness, which cannot even be expressed. We show that this issue is only apparent: the distinction between stuck and diverging computations is implicit in any big-step semantics and it just needs to be uncovered. To achieve this goal, we develop a systematic study of big-step semantics: we introduce an abstract definition of what a big-step semantics is, we define a notion of computation by formalising the evaluation algorithm implicitly associated with any big-step semantics, and we show how to canonically extend a big-step semantics to characterise stuck and diverging computations. Building on these notions, we describe a general proof technique to show that a predicate is sound, that is, it prevents stuck computation, with respect to a big-step semantics. One needs to check three properties relating the predicate and the semantics and, if they hold, the predicate is sound. The extended semantics are essential to establish this meta-logical result, but are of no concerns to the user, who only needs to prove the three properties of the initial big-step semantics. Finally, we illustrate the technique by several examples, showing that it is applicable also in cases where subject reduction does not hold, hence the standard technique for small-step semantics cannot be used.
PROMELA (Process Meta Language) is a high-level specification language designed for modeling interactions in distributed systems. PROMELA is used as the input language for the model checker SPIN (Simple Promela INterpreter). The main characteristics of PROMELA are non-determinism, process communication through synchronous as well as asynchronous channels, and the possibility to dynamically create instances of processes. In this paper, we introduce a bottom-up, fixpoint semantics that aims to model the behavior of PROMELA programs. This work is the first step towards a more ambitious goal where analysis and verification techniques based on abstract interpretation would be defined on top of such semantics.
A point process on a space is a random bag of elements of that space. In this paper we explore programming with point processes in a monadic style. To this end we identify point processes on a space X with probability measures of bags of elements in X. We describe this view of point processes using the composition of the Giry and bag monads on the category of measurable spaces and functions and prove that this composition also forms a monad using a distributive law for monads. Finally, we define a morphism from a point process to its intensity measure, and show that this is a monad morphism. A special case of this monad morphism gives us Walds Lemma, an identity used to calculate the expected value of the sum of a random number of random variables. Using our monad we define a range of point processes and point process operations and compositionally compute their corresponding intensity measures using the monad morphism.
This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as lambda-bar-mu-calculus, pi-calculus, Positive GSOS specifications, differential lambda-calculus, and the big-step, simply-typed, call-by-value lambda-calculus. Moreover, we design a suitable notion of signature for transition monads.