No Arabic abstract
Image generation from scene description is a cornerstone technique for the controlled generation, which is beneficial to applications such as content creation and image editing. In this work, we aim to synthesize images from scene description with retrieved patches as reference. We propose a differentiable retrieval module. With the differentiable retrieval module, we can (1) make the entire pipeline end-to-end trainable, enabling the learning of better feature embedding for retrieval; (2) encourage the selection of mutually compatible patches with additional objective functions. We conduct extensive quantitative and qualitative experiments to demonstrate that the proposed method can generate realistic and diverse images, where the retrieved patches are reasonable and mutually compatible.
Neural Networks require large amounts of memory and compute to process high resolution images, even when only a small part of the image is actually informative for the task at hand. We propose a method based on a differentiable Top-K operator to select the most relevant parts of the input to efficiently process high resolution images. Our method may be interfaced with any downstream neural network, is able to aggregate information from different patches in a flexible way, and allows the whole model to be trained end-to-end using backpropagation. We show results for traffic sign recognition, inter-patch relationship reasoning, and fine-grained recognition without using object/part bounding box annotations during training.
Convolutional neural networks (CNNs) have recently received a lot of attention due to their ability to model local stationary structures in natural images in a multi-scale fashion, when learning all model parameters with supervision. While excellent performance was achieved for image classification when large amounts of labeled visual data are available, their success for un-supervised tasks such as image retrieval has been moderate so far. Our paper focuses on this latter setting and explores several methods for learning patch descriptors without supervision with application to matching and instance-level retrieval. To that effect, we propose a new family of convolutional descriptors for patch representation , based on the recently introduced convolutional kernel networks. We show that our descriptor, named Patch-CKN, performs better than SIFT as well as other convolutional networks learned by artificially introducing supervision and is significantly faster to train. To demonstrate its effectiveness, we perform an extensive evaluation on standard benchmarks for patch and image retrieval where we obtain state-of-the-art results. We also introduce a new dataset called RomePatches, which allows to simultaneously study descriptor performance for patch and image retrieval.
In this paper, we present a novel approach to synthesize realistic images based on their semantic layouts. It hypothesizes that for objects with similar appearance, they share similar representation. Our method establishes dependencies between regions according to their appearance correlation, yielding both spatially variant and associated representations. Conditioning on these features, we propose a dynamic weighted network constructed by spatially conditional computation (with both convolution and normalization). More than preserving semantic distinctions, the given dynamic network strengthens semantic relevance, benefiting global structure and detail synthesis. We demonstrate that our method gives the compelling generation performance qualitatively and quantitatively with extensive experiments on benchmarks.
Text-to-image synthesis aims to automatically generate images according to text descriptions given by users, which is a highly challenging task. The main issues of text-to-image synthesis lie in two gaps: the heterogeneous and homogeneous gaps. The heterogeneous gap is between the high-level concepts of text descriptions and the pixel-level contents of images, while the homogeneous gap exists between synthetic image distributions and real image distributions. For addressing these problems, we exploit the excellent capability of generic discriminative models (e.g. VGG19), which can guide the training process of a new generative model on multiple levels to bridge the two gaps. The high-level representations can teach the generative model to extract necessary visual information from text descriptions, which can bridge the heterogeneous gap. The mid-level and low-level representations can lead it to learn structures and details of images respectively, which relieves the homogeneous gap. Therefore, we propose Symmetrical Distillation Networks (SDN) composed of a source discriminative model as teacher and a target generative model as student. The target generative model has a symmetrical structure with the source discriminative model, in order to transfer hierarchical knowledge accessibly. Moreover, we decompose the training process into two stages with different distillation paradigms for promoting the performance of the target generative model. Experiments on two widely-used datasets are conducted to verify the effectiveness of our proposed SDN.
Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis cite{park2019semantic}, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE.Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost. The code and pretrained models are available at url{https://github.com/tzt101/CLADE.git}.