No Arabic abstract
Topological nodal-line semimetals support protected band crossings which form nodal lines or nodal loops between the valence and conduction bands and exhibit novel transport phenomena. Here we address the topological state of the nodal-line semimetal candidate material, CaCdSn, and report magnetotransport properties of its single crystals grown by the self-flux method. Our first-principles calculations show that the electronic structure of CaCdSn harbors a single nodal loop around the $Gamma$ point in the absence of spin-orbit coupling (SOC) effects. The nodal crossings in CaCdSn are found to lie above the Fermi level and yield a Fermi surface that consists of both electron and hole pockets. CaCdSn exhibits high mobility ($mu approx 3.44times 10^4$ cm$^2$V$^{-1}$s$^{-1}$) and displays a field-induced metal-semiconductor like crossover with a plateau in resistivity at low temperature. We observe an extremely large and quasilinear non-saturating transverse as well as longitudinal magnetoresistance (MR) at low temperatures ($approx 7.44times 10^3 %$ and $approx 1.71times 10^3%$, respectively, at 4K). We also briefly discuss possible reasons behind such a large quasilinear magnetoresistance and its connection with the nontrivial band structure of CaCdSn.
We report the experimental and theoretical studies of a magnetic topological nodal line semimetal candidate HoSbTe. Single crystals of HoSbTe are grown from Sb flux, crystallizing in a tetragonal layered structure (space group: P4/nmm, no.129), in which the Ho-Te bilayer is separated by the square-net Sb layer. The magnetization and specific heat present distinct anomalies at 4 K related to an antiferromagnetic (AFM) phase transition. Meanwhile, with applying magnetic field perpendicular and parallel to the crystallographic c axis, an obvious magnetic anisotropy is observed. Electrical resistivity undergoes a bad-metal-like state below 200 K and reveals a plateau at about 8 K followed by a drop due to the AFM transition. In addition, with the first-principle calculations of band structure, we find that HoSbTe is a topological nodal line semimetal or a weak topological insulator with or without taking the spin-orbit coupling into account, providing a platform to investigate the interplay between magnetic and topological fermionic properties.
We investigate systematically the bulk and surface electronic structure of the candidate nodal-line semimetal CaAgAs by angle resolved photoemission spectroscopy and density functional calculations. We observed a metallic, linear, non-$k_z$-dispersive surface band that coincides with the high-binding-energy part of the theoretical topological surface state, proving the topological nontriviality of the system. An overall downshift of the experimental Fermi level points to a rigid-band-like $p$-doping of the samples, due possibly to Ag vacancies in the as-grown crystals.
The optical properties of YbMnSb2 have been measured in a broad frequency range from room temperature down to 7 K. With decreasing temperature, a flat region develops in the optical conductivity spectra at about 300cm-1, which can not be described by the well-known Drude-Lorentz model. A frequency-independent component has to be introduced to model the measured optical conductivity. Our first-principles calculations show that YbMnSb2 possesses a Dirac nodal line near the Fermi level. A comparison between the measured optical properties and calculated electronic band structures suggests that the frequency-independent optical conductivity component arises from interband transitions near the Dirac nodal line, thus demonstrating that YbMnSb2 is a Dirac nodal line semimetal.
Topological materials host fascinating low dimensional gapless states at the boundary. As a prominent example, helical topological edge states (TESs) of two-dimensional topological insulators (2DTIs) and their stacked three-dimensional (3D) equivalent, weak topological insulators (WTIs), have sparked research enthusiasm due to their potential application in the next generation of electronics/spintronics with low dissipation. Here, we propose layered superconducting material CaSn as a WTI with nontrivial Z2 as well as nodal line semimetal protected by crystalline non-symmorphic symmetry. Our systematic angle-resolved photoemission spectroscopy (ARPES) investigation on the electronic structure exhibits excellent agreement with the calculation. Furthermore, scanning tunnelling microscopy/spectroscopy (STM/STS) at the surface step edge shows signatures of the expected TES. These integrated evidences from ARPES, STM/STS measurement and corresponding ab initio calculation strongly support the existence of TES in the non-symmorphic nodal line semimetal CaSn, which may become a versatile material platform to realize multiple exotic electronic states as well as topological superconductivity.
Three dimensional materials with strong spin-orbit coupling and magnetic interactions represent an opportunity to realize a variety of rare and potentially useful topological phases. In this work, we use first principles calculations to show that the recently synthesized material Bi2MnSe4 displays a combination of band inversion and magnetic interactions, leading to several topological phases. Bi2PbSe4, also studied, also displays band inversion and is a topological insulator. In bulk form, the ferromagnetic phase of Bi2MnSe4 is either a nodal line or Weyl semimetal, depending on the direction of the spins. When the spins are arranged in a layered antiferromagnetic configuration, the combination of time reversal plus a partial translation is a new symmetry, and the material instead becomes an antiferromagnetic topological insulator. However, the intrinsic TRS breaking at the surface of Bi2MnSe4 removes the typical Dirac cone feature, allowing the observation of the half-integer quantum anomalous Hall effect (AHC). Furthermore, we show that in thin film form, for some thicknesses, Bi2MnSe4 becomes a Chern insulator with a band gap of up to 58 meV. This combination of properties in a stoichiometric magnetic material makes Bi2MnSe4 an excellent candidate for displaying robust topological behavior.