Do you want to publish a course? Click here

Weak Lensing of Type Ia Supernovae from the Dark Energy Survey

85   0   0.0 ( 0 )
 Added by Edward Macaulay
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of $sigma_8$, and find $sigma_8 = 1.2^{+0.9}_{-0.8}$. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA) (chosen to match the redshift range we use for this work), and find $sigma_8 = 0.8^{+1.1}_{-0.7}$. The comparable uncertainty in $sigma_8$ between DES-SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES-SN sample, and improvements in the calibration and data analysis.



rate research

Read More

78 - D. Scovacricchi 2016
We study the feasibility of detecting weak lensing spatial correlations between Supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15,000 SNe on 70 deg^2) at ~6sigma level of confidence (assuming 0.15 magnitudes of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal-to-noise, being detectable in both surveys with an integrated signal-to-noise of ~100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Omega_m) and the clustering amplitude (sigma_8) by fitting the auto-correlation function of our mock LSST deep fields. When assuming a Gaussian prior for Omega_m, we can achieve a 25% measurement of sigma_8 from just these LSST supernovae (assuming 0.15 magnitudes of intrinsic dispersion). These constraints will improve significantly if the intrinsic dispersion of SNe Ia can be reduced.
We present spectroscopy from the first three seasons of the Dark Energy Survey Supernova Program (DES-SN). We describe the supernova spectroscopic program in full: strategy, observations, data reduction, and classification. We have spectroscopically confirmed 307 supernovae, including 251 type Ia supernovae (SNe Ia) over a redshift range of $0.017 < z < 0.85$. We determine the effective spectroscopic selection function for our sample, and use it to investigate the redshift-dependent bias on the distance moduli of SNe Ia we have classified. We also provide a full overview of the strategy, observations, and data products of DES-SN, which has discovered 12,015 likely supernovae during these first three seasons. The data presented here are used for the first cosmology analysis by DES-SN (DES-SN3YR), the results of which are given in DES Collaboration (2018a).
We present an improved measurement of the Hubble constant (H_0) using the inverse distance ladder method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H_0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H_0 = 67.8 +/- 1.3 km s-1 Mpc-1 (statistical and systematic uncertainties, 68% confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H_0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a LCDM universe (Planck Collaboration et al. 2018).
We present the results of a study of selection criteria to identify Type Ia supernovae photometrically in a simulated mixed sample of Type Ia supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dark Energy Survey. Fits to the MLCS2k2 and SALT2 Type Ia supernova models are compared and used to help separate the Type Ia supernovae from the core collapse sample. The Dark Energy Task Force Figure of Merit (modified to include core collapse supernovae systematics) is used to discriminate among the various selection criteria. This study of varying selection cuts for Type Ia supernova candidates is the first to evaluate core collapse contamination using the Figure of Merit. Different factors that contribute to the Figure of Merit are detailed. With our analysis methods, both SALT2 and MLCS2k2 Figures of Merit improve with tighter selection cuts and higher purities, peaking at 98% purity.
We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our DES-SN3YR result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا