Do you want to publish a course? Click here

Observation of non-Fermi liquid physics in a quantum critical metal via quantum loop topography

173   0   0.0 ( 0 )
 Added by Carsten Bauer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Non-Fermi liquid physics is a ubiquitous feature in strongly correlated metals, manifesting itself in anomalous transport properties, such as a $T$-linear resistivity in experiments. However, its theoretical understanding in terms of microscopic models is lacking despite decades of conceptual work and attempted numerical simulations. Here we demonstrate that a combination of sign problem-free quantum Monte Carlo sampling and quantum loop topography, a physics-inspired machine learning approach, can map out the emergence of non-Fermi liquid physics in the vicinity of a quantum critical point with little prior knowledge. Using only three parameter points for training the underlying neural network, we are able to reproducibly identify a stable non-Fermi liquid regime tracing the fan of a metallic quantum critical points at the onset of both spin-density wave and nematic order. Our study thereby provides an important proof-of-principle example that new physics can be detected via unbiased machine-learning approaches.



rate research

Read More

Quantum many-fermion systems give rise to diverse states of matter that often reveal themselves in distinctive transport properties. While some of these states can be captured by microscopic models accessible to numerical exact quantum Monte Carlo simulations, it nevertheless remains challenging to numerically access their transport properties. Here we demonstrate that quantum loop topography (QLT) can be used to directly probe transport by machine learning current-current correlations in imaginary time. We showcase this approach by studying the emergence of superconducting fluctuations in the negative-U Hubbard model and a spin-fermion model for a metallic quantum critical point. For both sign-free models, we find that the QLT approach detects a change in transport in very good agreement with their established phase diagrams. These proof-of-principle calculations combined with the numerical efficiency of the QLT approach point a way to identify hitherto elusive transport phenomena such as non-Fermi liquids using machine learning algorithms.
Non-Fermi liquid behavior and pseudogap formation are among the most well-known examples of exotic spectral features observed in several strongly correlated materials such as the hole-doped cuprates, nickelates, iridates, ruthenates, ferropnictides, doped Mott organics, transition metal dichalcogenides, heavy fermions, d- and f- electron metals, etc. We demonstrate that these features are inevitable consequences when fermions couple to an unconventional Bose metal [1] mean field consisting of lower-dimensional coherence. Not only do we find both exotic phenomena, but also a host of other features that have been observed e.g. in the cuprates including nodal anti-nodal dichotomy and pseudogap asymmetry(symmetry) in momentum(real) space. Obtaining these exotic and heretofore mysterious phenomena via a mean field offers a simple, universal, and therefore widely applicable explanation for their ubiquitous empirical appearance. [1] A. Hegg, J. Hou, and W. Ku, Bose metal via failed insulator: A novel phase of quantum matter, arXiv preprint arXiv:2101.06264 (2021).
64 - T. Senthil 2006
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transition with an eye toward understanding the non-fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fermi surface with power law quasiparticles but with a volume not set by the usual Luttinger rule. We also discuss the possibility that the electronic structure change associated with the possible Fermi surface reconstruction may diverge at a different time/length scale from that associated with magnetic phenomena.
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting $T_c$ enclosing the nematic quantum critical point. For temperatures above $T_c$, we see strikingly non-Fermi liquid behavior, including a nodal - anti nodal dichotomy reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low frequency optical conductivity, resulting in behavior consistent with bad metal phenomenology.
228 - L. Forro , R. Gaal , H. Berger 2000
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two kinds of anomalous conducting states. The high-pressure metallic phase is a non-Fermi liquid described by Delta rho = T^n where n=1.2-1.3 at 1K < T < 60K. At p<p_cr, the transition is preceded by a wide precursor region with critically increasing resistivity which we ascribe to the opening of a soft Coulomb gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا