Massive molecular clumps fragment into cores where star formation takes place, hence star-forming studies should be done at different spatial scales. Using near-IR data obtained with Gemini, data of CH3OCHO and CH3CN from the ALMA database, observations of HCN, HNC, HCO+, and C2H carried out with ASTE, and CO data from public surveys, we perform a deep study of the YSO G29.86-0.004 at core and clump spatial scales. The near-IR emission shows two nebulosities separated by a dark lane, suggesting a typical disk-jets system, but highly asymmetric. They are likely produced by scattered light in cavities carved out by jets on an infalling envelope of material, which also present line emission of H2 and [FeII]. The presence of the complex molecular species observed with ALMA confirms that we are mapping a hot molecular core. The CH3CN emission concentrates at the position of the dark lane and it appears slightly elongated from southwest to northeast in agreement with the inclination of the system as observed at near-IR. The morphology of the CH3OCHO emission is more complex and extends along some filaments and concentrates in knots and clumps, mainly southwards the dark-lane, suggesting that the southern jet is encountering a dense region. The northern jet flows more freely, generating more extended features. This is in agreement with the red-shifted molecular outflow traced by the 12CO J=3-2 line extending towards the northwest and the lack of a blue-shifted outflow. This configuration can be explained by considering that the YSO is located at the furthest edge of the molecular clump along the line of sight, which is consistent with the position of the source in the cloud mapped in the C18O J=3-2 line. The detection of HCN, HNC, HCO+, and C2H allowed us to characterize the dense gas at clump scales, yielding results that are in agreement with the presence of a high-mass protostellar object.