ALMA resolves the remarkable molecular jet and rotating wind in the extremely radio-quiet galaxy NGC 1377


Abstract in English

Submillimetre and millimetre observations are important in probing the properties of the molecular gas and dust around obscured active galactic nuclei (AGNs) and their feedback. With very high-resolution (0.02x0.03 (2x3 pc)) ALMA 345 GHz observations of CO 3-2, HCO$^+$ 4-3, HCN 4-3 $ u_2$=1$f$, and continuum we have studied the molecular outflow and nucleus of the extremely radio-quiet lenticular galaxy NGC1377. The outflow is resolved, revealing a 150 pc long, clumpy, high-velocity, collimated molecular jet. The molecular emission is emerging from the spine of the jet with an average diameter of 3-7 pc. A narrow-angle, rotating molecular wind surrounds the jet and is enveloped by a larger-scale, slower CO-emitting structure. The jet and narrow wind are turbulent ($sigma>$40 kms$^{-1}$) and have steep radial gas excitation gradients. The jet shows velocity reversals that we propose are caused by precession, or episodic directional changes. We suggest that an important process powering the outflow is magneto-centrifugal driving. In contrast, the large-scale CO-envelope may be a slow wind, or cocoon that stems from jet-wind interactions. An asymmetric, nuclear r$sim$2 pc and hot (>180 K) dust structure with a high molecular column density, N(H$_2$)$sim1.8 times 10^{24}$ cm$^{-2}$, is detected in continuum and vibrationally excited HCN. Its luminosity is likely powered by a buried AGN. The mass of the supermassive black hole (SMBH) is estimated to $sim9times10^6$ M$_odot$ and the SMBH of NGC1377 appears to be at the end of an intense phase of accretion. The nuclear growth may be fuelled by low-angular momentum gas inflowing from gas ejected in the molecular jet and wind. Such a feedback-loop of cyclic accretion and outflows would be an effective process in growing the nuclear SMBH. This result invites new questions as to SMBH growth processes in obscured, dusty galaxies.

Download