Bitcoin Trace-Net: Formal Contract Verification at Signing Time


Abstract in English

Smart contracting protocols promise to regulate the transfer of cryptocurrency amongst participants in a trustless manner. A safe smart contract implementation should ensure that each participant can always append a contract transaction to the blockchain in order move the contract towards secure completion. To this goal, we propose Bitcoin Trace-Net, a contract verification framework which generates an executable symbolic model from the underlying contract implementation. A Trace-Net model consists of a Petri Net formalism enriched with a Dolev-Yao-like actor knowledge model. The explicit symbolic actor knowledge model supports the verification of contracts featuring cryptographic sub-protocols, which may not be observable on the blockchain. Trace-Net is sufficiently expressive to accurately model blockchain semantics such as the delay between a transaction broadcast and its subsequent confirmation, as well as adversarial blockchain reorganizations of finite depths, both of which can break smart contract safety. As an implementation level framework, Trace-Net can be instantiated at run-time to monitor and verify smart contract protocol executions.

Download