Do you want to publish a course? Click here

Inference and mutual information on random factor graphs

93   0   0.0 ( 0 )
 Added by Philipp Loick
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Random factor graphs provide a powerful framework for the study of inference problems such as decoding problems or the stochastic block model. Information-theoretically the key quantity of interest is the mutual information between the observed factor graph and the underlying ground truth around which the factor graph was created; in the stochastic block model, this would be the planted partition. The mutual information gauges whether and how well the ground truth can be inferred from the observable data. For a very general model of random factor graphs we verify a formula for the mutual information predicted by physics techniques. As an application we prove a conjecture about low-density generator matrix codes from [Montanari: IEEE Transactions on Information Theory 2005]. Further applications include phase transitions of the stochastic block model and the mixed $k$-spin model from physics.



rate research

Read More

We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the controller to significantly accelerate the hitting and cover times in several natural graph classes. In particular, we show that the cover time becomes linear in the number $n$ of vertices on discrete tori and bounded degree trees, of order $mathcal{O}(n log log n)$ on bounded degree expanders, and of order $mathcal{O}(n (log log n)^2)$ on the ErdH{o}s-R{e}nyi random graph in a certain sparsely connected regime. We also consider the algorithmic question of computing an optimal strategy, and prove a dichotomy in efficiency between computing strategies for hitting and cover times.
We prove that a random group in the triangular density model has, for density larger than 1/3, fixed point properties for actions on $L^p$-spaces (affine isometric, and more generally $(2-2epsilon)^{1/2p}$-uniformly Lipschitz) with $p$ varying in an interval increasing with the set of generators. In the same model, we establish a double inequality between the maximal $p$ for which $L^p$-fixed point properties hold and the conformal dimension of the boundary. In the Gromov density model, we prove that for every $p_0 in [2, infty)$ for a sufficiently large number of generators and for any density larger than 1/3, a random group satisfies the fixed point property for affine actions on $L^p$-spaces that are $(2-2epsilon)^{1/2p}$-uniformly Lipschitz, and this for every $pin [2,p_0]$. To accomplish these goals we find new bounds on the first eigenvalue of the p-Laplacian on random graphs, using methods adapted from Kahn and Szemeredis approach to the 2-Laplacian. These in turn lead to fixed point properties using arguments of Bourdon and Gromov, which extend to $L^p$-spaces previous results for Kazhdans Property (T) established by Zuk and Ballmann-Swiatkowski.
Given two independent sets $I, J$ of a graph $G$, and imagine that a token (coin) is placed at each vertex of $I$. The Sliding Token problem asks if one could transform $I$ to $J$ via a sequence of elementary steps, where each step requires sliding a token from one vertex to one of its neighbors so that the resulting set of vertices where tokens are placed remains independent. This problem is $mathsf{PSPACE}$-complete even for planar graphs of maximum degree $3$ and bounded-treewidth. In this paper, we show that Sliding Token can be solved efficiently for cactus graphs and block graphs, and give upper bounds on the length of a transformation sequence between any two independent sets of these graph classes. Our algorithms are designed based on two main observations. First, all structures that forbid the existence of a sequence of token slidings between $I$ and $J$, if exist, can be found in polynomial time. A sufficient condition for determining no-instances can be easily derived using this characterization. Second, without such forbidden structures, a sequence of token slidings between $I$ and $J$ does exist. In this case, one can indeed transform $I$ to $J$ (and vice versa) using a polynomial number of token-slides.
The second authors $omega$, $Delta$, $chi$ conjecture proposes that every graph satisties $chi leq lceil frac 12 (Delta+1+omega)rceil$. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results we introduce a very useful $chi$-preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so-called skeletal graphs.
Bir{o} et al. (1992) introduced $H$-graphs, intersection graphs of connected subgraphs of a subdivision of a graph $H$. They are related to many classes of geometric intersection graphs, e.g., interval graphs, circular-arc graphs, split graphs, and chordal graphs. We negatively answer the 25-year-old question of Bir{o} et al. which asks if $H$-graphs can be recognized in polynomial time, for a fixed graph $H$. We prove that it is NP-complete if $H$ contains the diamond graph as a minor. We provide a polynomial-time algorithm recognizing $T$-graphs, for each fixed tree $T$. When $T$ is a star $S_d$ of degree $d$, we have an $O(n^{3.5})$-time algorithm. We give FPT- and XP-time algorithms solving the minimum dominating set problem on $S_d$-graphs and $H$-graphs parametrized by $d$ and the size of $H$, respectively. The algorithm for $H$-graphs adapts to an XP-time algorithm for the independent set and the independent dominating set problems on $H$-graphs. If $H$ contains the double-triangle as a minor, we prove that $H$-graphs are GI-complete and that the clique problem is APX-hard. The clique problem can be solved in polynomial time if $H$ is a cactus graph. When a graph $G$ has a Helly $H$-representation, the clique problem can be solved in polynomial time. We show that both the $k$-clique and the list $k$-coloring problems are solvable in FPT-time on $H$-graphs (parameterized by $k$ and the treewidth of $H$). In fact, these results apply to classes of graphs with treewidth bounded by a function of the clique number. We observe that $H$-graphs have at most $n^{O(|H|)}$ minimal separators which allows us to apply the meta-algorithmic framework of Fomin et al. (2015) to show that for each fixed $t$, finding a maximum induced subgraph of treewidth $t$ can be done in polynomial time. When $H$ is a cactus, we improve the bound to $O(|H|n^2)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا